(12分)設函數(shù),曲線在點處的切線方程為
(I)求
(II)證明:
(I);(II)詳見解析.
解析試題分析:(I)由切點在切線上,代入得①.由導數(shù)的幾何意義得②,聯(lián)立①②求;(II)證明成立,可轉化為求函數(shù)的最小值,只要最小值大于1即可.該題不易求函數(shù)的最小值,故可考慮將不等式結構變形為,分別求函數(shù)和的最值,發(fā)現(xiàn)在的最小值為,在的最大值為.且不同時取最值,故成立,即注意該種方法有局限性只是不等式的充分不必要條件,意即當成立,最值之間不一定有上述關系.
試題解析:(I)函數(shù)的定義域為..
由題意可得,.故.
(II)由(I)知,,從而等價于,設函數(shù),則.所以當時,;當時,.故在遞減,在遞增,從而在的最小值為.設,則.所以當時,;當時,.故在遞增,在遞減,從而在的最大值為.綜上,當時,,即.
【考點定位】1、導數(shù)的幾何意義;2、利用導數(shù)判斷函數(shù)的單調(diào)性;3、利用導數(shù)求函數(shù)的最值.
科目:高中數(shù)學 來源: 題型:解答題
設是函數(shù)的兩個極值點.
(1)試確定常數(shù)和的值;
(2)試判斷是函數(shù)的極大值點還是極小值點,并求出相應極值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù).
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)關于的方程f(x)=a在區(qū)間上有三個根,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù).
(1)若在時有極值,求實數(shù)的值和的極大值;
(2)若在定義域上是增函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù)
(1)若時,函數(shù)有三個互不相同的零點,求的取值范圍;
(2)若函數(shù)在內(nèi)沒有極值點,求的取值范圍;
(3)若對任意的,不等式在上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù) .
(1) 當時,求函數(shù)的單調(diào)區(qū)間;
(2) 當時,求函數(shù)在上的最小值和最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com