5.斜率為$\frac{1}{2}$且過點(diǎn)(2,2)的直線交拋物線y2=4x于A,B兩點(diǎn),求|AB|.

分析 設(shè)A(x1,y1),B(x2,y2).由已知可得直線AB的方程為:y-2=$\frac{1}{2}$(x-2),與拋物線的方程聯(lián)立可得根與系數(shù)的關(guān)系.利用弦長公式即可得出.

解答 解:設(shè)A(x1,y1),B(x2,y2).
由已知可得直線AB的方程為:y-2=$\frac{1}{2}$(x-2),
聯(lián)立$\left\{\begin{array}{l}{x-2y+2=0}\\{{y}^{2}=4x}\end{array}\right.$,化為x2-12x+4=0,
∴x1+x2=12.x1x2=4
∴|AB|=$\sqrt{1+{k}^{2}}$|x1-x2|=$\sqrt{1+\frac{1}{4}}$•$\sqrt{1{2}^{2}-16}$=4$\sqrt{10}$.

點(diǎn)評 本題考查了拋物線的弦長公式,考查計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在△ABC中,a,b,c分別是角A,B,C的對邊,且(a+b+c)(a+b-c)=3ab.
(Ⅰ)求角C的值;
(Ⅱ)若c=2,且△ABC為銳角三角形,求a+b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知全集U={x|y=log2(x-1)},集合A={x||x-2|<1},則∁UA=(  )
A.(3,+∞)B.[3,+∞)C.(1,3)D.(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知f(x)是定義在R上的奇函數(shù),且f(x+2)=f(x-2);當(dāng)0≤x≤1時(shí),f(x)=$\sqrt{x}$,則f(1)+f(2)+f(3)+…+f(2017)等于( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=(x-1)ex-$\frac{1}{2}$ax2(a∈R),這里e是自然對數(shù)的底數(shù).
(1)求f(x)的單調(diào)區(qū)間;
(2)試討論f(x)在區(qū)間(a-1,+∞)上是否存在極小值點(diǎn)?若存在,請求出極小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的半焦距為c,頂點(diǎn)A(a,0)到漸近線的距離為$\frac{\sqrt{2}}{3}$c,則雙曲線的離心率為$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的長軸長為6,且橢圓C與圓M:(x-2)2+y2=$\frac{40}{9}$的公共弦長為$\frac{4\sqrt{10}}{3}$.
(1)求橢圓C的方程,
(2)過點(diǎn)P(0,2)作斜率為k(k≠0)的直線l與橢圓C交于兩點(diǎn)A,B,試判斷在x軸上是否存在點(diǎn)D,使得△ADB為以AB為底邊的等腰三角形,若存在,求出點(diǎn)D的橫坐標(biāo)的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=(2x2-4ax)lnx+x2
(1)設(shè)a>0,求函數(shù)f(x)的單調(diào)區(qū)間.
(2)不等式(2x-4a)lnx>-x對?x∈[1,+∞)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.一工廠生產(chǎn)了某種產(chǎn)品180件,它們來自甲、乙、丙3條生產(chǎn)線,為檢查這批產(chǎn)品的質(zhì)量,決定采用分層抽樣的方法進(jìn)行抽樣,已知甲、乙、丙三條生產(chǎn)線抽取的個體數(shù)組成一個等差數(shù)列,則乙生產(chǎn)線生產(chǎn)了60件產(chǎn)品.

查看答案和解析>>

同步練習(xí)冊答案