【題目】隨機(jī)調(diào)查某社區(qū)80個(gè)人,以研究這一社區(qū)居民的休閑方式是否與性別有關(guān),得到下面的數(shù)據(jù)表:

休閑方式
性別

看電視

運(yùn)動(dòng)

合計(jì)

男性

20

10

30

女性

45

5

50

合計(jì)

65

15

80


(1)將此樣本的頻率估計(jì)為總體的概率,隨機(jī)調(diào)查3名在該社區(qū)的男性,設(shè)調(diào)查的3人是以運(yùn)動(dòng)為休閑方式的人數(shù)為隨機(jī)變量X,求X的分布列和期望;
(2)根據(jù)以上數(shù)據(jù),能否有99%的把握認(rèn)為休閑方式與性別有關(guān)系?

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:K2= ),其中n=a+b+c+d)

【答案】
(1)解:由 題 意 可 知,隨機(jī)變量X的可能取值為0,1,2,3,

且 每 個(gè) 男 性 以 運(yùn) 動(dòng) 為 休 閑 方 式 的 概 率 為 P= = ,

根 據(jù) 題 意 可 得 X~B( 3, ),

∴P( X=k)= ,k=0,1,2,3,

故 X 的 分 布 列 為

X

0

1

2

3

P

數(shù)學(xué)期望為E( X)=3× =1;


(2)解:計(jì)算K2= = = ≈6.70,

因 為 6.700>6.635,

所 以 我 們 有 99%的 把 握 認(rèn) 為 休 閑 方 式 與 性 別 有 關(guān).


【解析】(1)由 題 意 知隨機(jī)變量X的可能取值,根據(jù)題意得X~B(3, ),計(jì)算對(duì)應(yīng)的概率值,寫出X的分布列,計(jì)算數(shù)學(xué)期望值;(2)計(jì)算K2,對(duì)照臨界值表得出結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣k)ex . (Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)求f(x)在區(qū)間[0,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三人獨(dú)立破譯同一份密碼.已知三人各自破譯出密碼的概率分別為 ,且他們是否破譯出密碼互不影響. (Ⅰ)求恰有二人破譯出密碼的概率;
(Ⅱ)“密碼被破譯”與“密碼未被破譯”的概率哪個(gè)大?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】人口問題是當(dāng)今世界各國普遍關(guān)注的問題.認(rèn)識(shí)人口數(shù)量的變化規(guī)律,可以為有效控制人口增長提供依據(jù).早在1798年,英國經(jīng)濟(jì)學(xué)家馬爾薩斯(T.R.Malthus,1766—1834)就提出了自然狀態(tài)下的人口增長模型: ,其中x表示經(jīng)過的時(shí)間, 表示x=0時(shí)的人口,r表示人口的平均增長率.

下表是1950―1959年我國人口數(shù)據(jù)資料:

如果以各年人口增長率的平均值作為我國這一時(shí)期的人口增長率,用馬爾薩斯人口增長模型建立我國這一時(shí)期的具體人口增長模型,某同學(xué)利用圖形計(jì)算器進(jìn)行了如下探究:

由此可得到我國1950―1959年我國這一時(shí)期的具體人口增長模型為____________. (精確到0.001)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3﹣3x2﹣9x+2.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[﹣1,m](m>﹣1)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)若f(1)<0,試判斷函數(shù)單調(diào)性并求使不等式恒成立的的取值范圍;

(2)若, 上的最小值為-2,求m的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,PC底面ABCD,底面ABCD是直角梯形,ABAD,ABCD,AB=2AD=2CD=2,EPB的中點(diǎn).

(1)求證:平面EAC平面PBC;

(2)若二面角PACE的余弦值為,求直線PA與平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) f(x)=x﹣ln x﹣2.
(Ⅰ)求函數(shù) f ( x)的最小值;
(Ⅱ)如果不等式 x ln x+(1﹣k)x+k>0(k∈Z)在區(qū)間(1,+∞)上恒成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知PA⊥平面ABCD,且四邊形ABCD為矩形,M、N分別是AB、PC的中點(diǎn).

1求證:MN⊥CD;

2若∠PDA=45°,求證:MN⊥平面PCD.

查看答案和解析>>

同步練習(xí)冊(cè)答案