(2013•天津)如圖,四棱柱ABCD﹣A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,
AA1=AB=2,E為棱AA1的中點.
(1)證明B1C1⊥CE;
(2)求二面角B1﹣CE﹣C1的正弦值.
(3)設點M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為,求線段AM的長.
科目:高中數(shù)學 來源: 題型:解答題
如圖,四棱錐中,平面平面,//,,
,且,.
(1)求證:平面;
(2)求和平面所成角的正弦值;
(3)在線段上是否存在一點使得平面平面,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在底面邊長為1,側(cè)棱長為2的正四棱柱中,P是側(cè)棱上的一點,.
(1)試確定m,使直線AP與平面BDD1B1所成角為60º;
(2)在線段上是否存在一個定點,使得對任意的m,
⊥AP,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知四棱錐P-ABCD中,PB⊥平面ABCD,底面ABCD是直角梯形,∠ABC=∠BCD=90°,PB=BC=CD=AB.Q是PC上的一點,且PA∥平面QBD.
⑴確定Q的位置;
⑵求二面角Q-BD-C的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1BC=2,又PB⊥平面ABCD,且PB=1,點E在棱PD上,且DE=2PE.
(1)求證:BE⊥平面PCD;
(2)求二面角A一PD-B的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com