【題目】已知函數(shù)(其中為常數(shù)).
(1)若在上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(2)若在上的最大值為,求的值.
【答案】(1);(2)
【解析】
(1)對(duì)函數(shù)進(jìn)行求導(dǎo),再利用參變分離,將問題轉(zhuǎn)化為恒成立問題;
(2)對(duì)函數(shù)進(jìn)行求導(dǎo)得,再對(duì)分成三種情況,即、、進(jìn)行分類討論,分別求出最大值,進(jìn)而得到的值.
(1)由可得,
由在上單調(diào)遞增可得在上恒成立,
即,,由可得,
故只需,,即實(shí)數(shù)的取值范圍是.
(2)由(1)可知,
①當(dāng),即時(shí),在(1,2)上恒成立,
故在(1,2)上單調(diào)遞增,則在[1,2]上的最大值為,
故,滿足;
②當(dāng),即時(shí),在(1,2)上恒成立,
故在(1,2)上單調(diào)遞減,則在[1,2]上的最大值為,
故,不滿足,舍去;
③當(dāng),即時(shí),由可得.
時(shí),;當(dāng)時(shí),,
即在上單調(diào)遞增,在上單調(diào)遞減,
故的最大值為,即,
所以,,不滿足,舍去.
綜上可知,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求的極坐標(biāo)方程;
(2)將曲線上所有點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)縮短到原來的倍,得到曲線,若與的交點(diǎn)為(異于坐標(biāo)原點(diǎn)),與的交點(diǎn)為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若在兩個(gè)成語(yǔ)中,一個(gè)成語(yǔ)的末字恰是另一成語(yǔ)的首字,則稱這兩個(gè)成語(yǔ)有頂真關(guān)系,現(xiàn)從分別貼有成語(yǔ)“人定勝天”、“爭(zhēng)先恐后”、“一馬當(dāng)先”、“天馬行空”、“先發(fā)制人”的5張大小形狀完全相同卡片中,任意抽取2張,則這2張卡片上的成語(yǔ)有頂真關(guān)系的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為(其中為參數(shù)),以原點(diǎn)為極點(diǎn),以軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(為常數(shù),且),直線與曲線交于兩點(diǎn).
(1)若,求實(shí)數(shù)的值;
(2)若點(diǎn)的直角坐標(biāo)為,且,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年5月20日以來,廣東自西北到東南出現(xiàn)了一次明顯降雨.為了對(duì)某地的降雨情況進(jìn)行統(tǒng)計(jì),氣象部門對(duì)當(dāng)?shù)?/span>20日~28日9天記錄了其中100小時(shí)的降雨情況,得到每小時(shí)降雨情況的頻率分布直方圖如下:
若根據(jù)往年防汛經(jīng)驗(yàn),每小時(shí)降雨量在時(shí),要保持二級(jí)警戒,每小時(shí)降雨量在時(shí),要保持一級(jí)警戒.
(1)若從記錄的這100小時(shí)中按照警戒級(jí)別采用分層抽樣的方法抽取10小時(shí)進(jìn)行深度分析.
①求一級(jí)警戒和二級(jí)警戒各抽取多少小時(shí);
②若從這10個(gè)小時(shí)中任選2個(gè)小時(shí),則這2個(gè)小時(shí)中恰好有1小時(shí)屬于一級(jí)警戒的概率.(2)若以每組的中點(diǎn)代表該組數(shù)據(jù)值,求這100小時(shí)內(nèi)的平均降雨量.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是梯形,四邊形是矩形,且平面平面,,,是的中點(diǎn).
(1)證明:平面;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左焦點(diǎn)為,橢圓上動(dòng)點(diǎn)到點(diǎn)的最遠(yuǎn)距離和最近距離分別為和.
(1)求橢圓的方程;
(2)設(shè)分別為橢圓的左、右頂點(diǎn),過點(diǎn)且斜率為的直線與橢圓交于、兩點(diǎn),若,為坐標(biāo)原點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三共有1000位學(xué)生,為了分析某次的數(shù)學(xué)考試成績(jī),采取隨機(jī)抽樣的方法抽取了50位高三學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì)分析,得到如圖所示頻數(shù)分布表:
分組 | |||||
頻數(shù) | 3 | 11 | 18 | 12 | 6 |
(1)根據(jù)頻數(shù)分布表計(jì)算成績(jī)?cè)?/span>的頻率并計(jì)算這組數(shù)據(jù)的平均值(同組的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替);
(2)用分層抽樣的方法從成績(jī)?cè)?/span>和的學(xué)生中共抽取5人,從這5人中任取2人,求成績(jī)?cè)?/span>和中各有1人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校運(yùn)動(dòng)會(huì)的立定跳遠(yuǎn)和30秒跳繩兩個(gè)單項(xiàng)比賽分成預(yù)賽和決賽兩個(gè)階段.下表為10名學(xué)生的預(yù)賽成績(jī),其中有三個(gè)數(shù)據(jù)模糊.
學(xué)生序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
立定跳遠(yuǎn)(單位:米) | 1.96 | 1.92 | 1.82 | 1.80 | 1.78 | 1.76 | 1.74 | 1.72 | 1.68 | 1.60 |
30秒跳繩(單位:次) | 63 | a | 75 | 60 | 63 | 72 | 70 | a1 | b | 65 |
在這10名學(xué)生中,進(jìn)入立定跳遠(yuǎn)決賽的有8人,同時(shí)進(jìn)入立定跳遠(yuǎn)決賽和30秒跳繩決賽的有6人,則
(A)2號(hào)學(xué)生進(jìn)入30秒跳繩決賽
(B)5號(hào)學(xué)生進(jìn)入30秒跳繩決賽
(C)8號(hào)學(xué)生進(jìn)入30秒跳繩決賽
(D)9號(hào)學(xué)生進(jìn)入30秒跳繩決賽
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com