【題目】已知橢圓,離心率為,直線恒過的一個焦點.

1)求的標準方程;

2)設(shè)為坐標原點,四邊形的頂點均在上,交于,且,若直線的傾斜角的余弦值為,求直線軸交點的坐標.

【答案】12

【解析】

1)將轉(zhuǎn)化成直線點斜式方程形式,求出所過的恒點,進而知道橢圓的焦點,再根據(jù)橢圓的離心率公式進行求解即可.

2)根據(jù)向量等式,可以確定分別是的中點.設(shè),求出直線的方程,與橢圓方程聯(lián)立,消元,利用一元二次方程根與系數(shù)關(guān)系,求出的坐標,同理求出點坐標,求出直線的方程,最后求出直線軸交點的坐標.

1)設(shè)橢圓的半焦距為,可化為,所以直線恒過點,所以點,可得.因為離心率為,所以,解得,由,所以的標準方程為.

2)因為,所以.分別是的中點.設(shè).由直線的傾斜角的余弦值為,得直線的斜率為2,所以,聯(lián)立消去,得.顯然,,且 ,所以,可得,同理可得,所以,所以.,得,所以直線軸交點的坐標為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某次考試后,對全班同學的數(shù)學成績進行整理,得到表:

分數(shù)段

人數(shù)

5

15

20

10

將以上數(shù)據(jù)繪制成頻率分布直方圖后,可估計出本次考試成績的中位數(shù)是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱錐的四個頂點在球的球面上,,是邊長為正三角形,分別是的中點,,則球的體積為_________________。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】本小題滿分13分如圖在直角坐標系,的頂點是原點,始邊與軸正半軸重合終邊交單位圓于點,,將角的終邊按逆時針方向旋轉(zhuǎn),交單位圓于點,

1;

2分別過軸的垂線,垂足依次為的面積為,的面積為,,求角的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某快遞公司收取快遞費用的標準是:重量不超過的包裹收費元;重量超過的包裹,除收費元之外,超過的部分,每超出(不足,按計算)需再收元.該公司將最近承攬的件包裹的重量統(tǒng)計如下:

包裹重量(單位:

包裹件數(shù)

公司對近天,每天攬件數(shù)量統(tǒng)計如下表:

包裹件數(shù)范圍

包裹件數(shù)

(近似處理)

天數(shù)

以上數(shù)據(jù)已做近似處理,并將頻率視為概率.

(1)計算該公司未來天內(nèi)恰有天攬件數(shù)在之間的概率;

(2)(i)估計該公司對每件包裹收取的快遞費的平均值;

(ii)公司將快遞費的三分之一作為前臺工作人員的工資和公司利潤,剩余的用作其他費用.目前前臺有工作人員人,每人每天攬件不超過件,工資元.公司正在考慮是否將前臺工作人員裁減人,試計算裁員前后公司每日利潤的數(shù)學期望,并判斷裁員是否對提高公司利潤更有利?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于定義在上的函數(shù),若函數(shù)滿足:①在區(qū)間上單調(diào)遞減;②存在常數(shù)p,使其值域為,則稱函數(shù)漸近函數(shù);

1)證明:函數(shù)是函數(shù)的漸近函數(shù),并求此時實數(shù)p的值;

2)若函數(shù),證明:當時,不是的漸近函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)在其定義域內(nèi)有兩個不同的極值點.

1)求函數(shù)a的取值范圍;

2)記函數(shù)的兩個極值點為,且,證明對任意實數(shù),都有不等式成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)且 )曲線的參數(shù)方程為為參數(shù),且),以為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為: ,曲線的極坐標方程為.

(1)求的交點到極點的距離;

(2)設(shè)交于點,交于點,當上變化時,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)打算處理一批產(chǎn)品,這些產(chǎn)品每箱100件,以箱為單位銷售.已知這批產(chǎn)品中每箱出現(xiàn)的廢品率只有或者兩種可能,兩種可能對應(yīng)的概率均為0.5.假設(shè)該產(chǎn)品正品每件市場價格為100元,廢品不值錢.現(xiàn)處理價格為每箱8400元,遇到廢品不予更換.以一箱產(chǎn)品中正品的價格期望值作為決策依據(jù).

1)在不開箱檢驗的情況下,判斷是否可以購買;

2)現(xiàn)允許開箱,有放回地隨機從一箱中抽取2件產(chǎn)品進行檢驗.

①若此箱出現(xiàn)的廢品率為,記抽到的廢品數(shù)為,求的分布列和數(shù)學期望;

②若已發(fā)現(xiàn)在抽取檢驗的2件產(chǎn)品中,其中恰有一件是廢品,判斷是否可以購買.

查看答案和解析>>

同步練習冊答案