【題目】為了解某商場旅游鞋的日銷售情況,現(xiàn)抽取部分顧客購鞋的尺碼,將所得數(shù)據(jù)繪成如圖所示頻率分布直方圖,已知圖中從左到右前三組的頻率之比為1:2:3,第二組的頻數(shù)為10.

(1)用頻率估計(jì)概率,求尺碼落在區(qū)間(37.5,43.5]概率約是多少?
(2)從尺碼落在區(qū)間(37.5,39.5](43.5,45.5]顧客中任意選取兩人,記在區(qū)間(43.5,45.5]的人數(shù)為X,求X的分布列及數(shù)學(xué)期望EX.

【答案】
(1)解:由頻率分布直方圖第四組第五組的頻率分別為0.175,0.075.再由頻率之比和互斥事件的和事件的概率等于概率之和:P=0.25+0.375+0.175=0.8
(2)解:設(shè)抽取的顧客人數(shù)為n,則由已知可得n=40.尺碼落在區(qū)間(43.5,45.5]的人數(shù)為3人,所以可知X可能取到的值為0,1,2.又尺碼落在區(qū)間(37.5,39.5]的人數(shù)為10人,所以:P(X=0)= ,P(X=1)= ,P(X=2)=

所以X的數(shù)學(xué)期望EX=


【解析】(1)通過頻率分布直方圖第四組第五組的頻率.再由頻率之比和互斥事件的和事件的概率等于概率之和求解即可.(2)設(shè)抽取的顧客人數(shù)為n,求出n.尺碼落在區(qū)間(43.5,45.5]的人數(shù)為3人,得到X可能取到的值,然后求出概率,得到期望.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解離散型隨機(jī)變量及其分布列的相關(guān)知識(shí),掌握在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡稱分布列.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 與橢圓 在第一象限的交點(diǎn)為, 為坐標(biāo)原點(diǎn), 為橢圓的右頂點(diǎn), 的面積為.

求拋物線的方程;

點(diǎn)作直線、 兩點(diǎn),射線、分別交、兩點(diǎn),記的面積分別為,問是否存在直線,使得?若存在,求出直線的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求滿足的值;

(2)若函數(shù)是定義在R上的奇函數(shù),函數(shù)滿足,若對(duì)任意≠0,不等式恒成立,求實(shí)數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)試判斷fx)的單調(diào)性,并證明你的結(jié)論;

(2)若fx)為定義域上的奇函數(shù),求函數(shù)fx)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】棱臺(tái)的三視圖與直觀圖如圖所示.

(1)求證:平面平面;

(2)在線段上是否存在一點(diǎn),使與平面所成的角的正弦值為?若存在,指出點(diǎn)的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), ,其中.

1試討論函數(shù)的單調(diào)性及最值;

2若函數(shù)不存在零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:(x+1)2+y2=20,點(diǎn)B(l,0).點(diǎn)A是圓C上的動(dòng)點(diǎn),線段AB的垂直平分線與線段AC交于點(diǎn)P.
(1)求動(dòng)點(diǎn)P的軌跡C1的方程;
(2)設(shè) ,N為拋物線C2:y=x2上的一動(dòng)點(diǎn),過點(diǎn)N作拋物線C2的切線交曲線Cl于P,Q兩點(diǎn),求△MPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 .

(1)若函數(shù)的單調(diào)遞減區(qū)間為,求函數(shù)的圖象在點(diǎn)處的切線方程;

2若不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{}的前n項(xiàng)和 (n為正整數(shù))。

1,求證數(shù)列{}是等差數(shù)列,并求數(shù)列{}的通項(xiàng)公式;

(2),試比較的大小,并予以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案