已知函數(shù)(其中),的反函數(shù).
(1)已知關(guān)于的方程在區(qū)間上有實數(shù)解,求實數(shù)的取值范圍;
(2)當時,討論函數(shù)的奇偶性和增減性;
(3)設(shè),其中.記,數(shù)列的前項的和為),
求證:.
(1);(2)奇函數(shù),減函數(shù);(3)證明見解析.

試題分析:(1)這是一個對數(shù)方程,首先要轉(zhuǎn)化為代數(shù)方程,根據(jù)對數(shù)的性質(zhì)有,從而有,方程在上有解,就變?yōu)榍蠛瘮?shù)上的值域,轉(zhuǎn)化時注意對數(shù)的真數(shù)為正;(2)奇偶性和單調(diào)性我們都根據(jù)定義加以解決;(3),
,要證明不等式成立,最好是能把和求出來,但看其通項公式,這個和是不可能求出的,由于我們只要證明不等式,那么我們能不能把放縮后可求和呢?,顯然,即,左邊易證,又由二項式定理
,在時,,所以,注意到,至此不等式的右邊可以求和了,
,得證.
試題解析:(1)轉(zhuǎn)化為求函數(shù)上的值域,
該函數(shù)在上遞增、在上遞減,所以的最小值5,最大值9。所以的取值范圍為。         4分
(2)的定義域為,         5分
定義域關(guān)于原點對稱,又, ,所以函數(shù)為奇函數(shù)。         6分
下面討論在上函數(shù)的增減性.
任取,設(shè),令,則,,所以
因為,,所以.        7分
又當時,是減函數(shù),所以.由定義知在上函數(shù)是減函數(shù).         8分
又因為函數(shù)是奇函數(shù),所以在上函數(shù)也是減函數(shù).        9分
(3) ;        10分
因為,,所以,。  11分
設(shè),時,則 ,   12分
,   13分
由二項式定理,        14分
所以,
從而。        18分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列函數(shù)中,在區(qū)間上單調(diào)遞減的是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對函數(shù)f(x)=xsin x,現(xiàn)有下列命題:①函數(shù)f(x)是偶函數(shù);②函數(shù)f(x)的最小正周期是2π;③點(π,0)是函數(shù)f(x)的圖象的一個對稱中心;④函數(shù)f(x)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減.其中是真命題的是________.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=x3-2x2+3m,x∈[0,+∞),若f(x)+5≥0恒成立,則實數(shù)m的取值范圍是(  )
A.B.
C.(-∞,2]D.(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=2sin ωx-4sin 2+2+a(ω>0,a∈R),且f(x)的圖象在y軸右側(cè)的第一個最高點的橫坐標為2.
(1)求函數(shù)f(x)的最小正周期;
(2)若f(x)在區(qū)間[6,16]上的最大值為4,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知定義在R上的函數(shù)yf(x)滿足條件f=-f(x),且函數(shù)yf為奇函數(shù),給出以下四個命題:
(1)函數(shù)f(x)是周期函數(shù);
(2)函數(shù)f(x)的圖象關(guān)于點對稱;
(3)函數(shù)f(x)為R上的偶函數(shù);
(4)函數(shù)f(x)為R上的單調(diào)函數(shù).
其中真命題的序號為________.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),若對于任意,當時,總有,則區(qū)間有可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若實數(shù)滿足的最小值為           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

己知函數(shù)f(x)=在[-1,1]上的最大值為M(a) ,若函數(shù)g(x)=M(x)-有4個零點,則實數(shù)t的取值范圍為(     )
A.(1,)B.(1,-1)
C.(1,-1)(1, )D.(1,-1)(1,2)

查看答案和解析>>

同步練習(xí)冊答案