【題目】在一次國(guó)際學(xué)術(shù)會(huì)議上,來自四個(gè)國(guó)家的五位代表被安排坐在一張圓桌,為了使他們能夠自由交談,事先了解到的情況如下:
甲是中國(guó)人,還會(huì)說英語.
乙是法國(guó)人,還會(huì)說日語.
丙是英國(guó)人,還會(huì)說法語.
丁是日本人,還會(huì)說漢語.
戊是法國(guó)人,還會(huì)說德語.
則這五位代表的座位順序應(yīng)為( )
A.甲丙丁戊乙
B.甲丁丙乙戊
C.甲乙丙丁戊
D.甲丙戊乙丁

【答案】D
【解析】這道題實(shí)際上是一個(gè)邏輯游戲,首先要明確解題要點(diǎn):甲乙丙丁戊 個(gè)人首尾相接,而且每一個(gè)人和相鄰的兩個(gè)人都能通過語言交流,而且 個(gè)備選答案都是從甲開始的,因此,我們從甲開始推理.思路一:正常的思路,根據(jù)題干來作答.甲會(huì)說中文和英語,那么甲的下一鄰居一定是會(huì)說英語或者中文的,以此類推,得出答案.思路二:根據(jù)題干和答案綜合考慮,運(yùn)用排除法來解決,首先,觀察每個(gè)答案中最后一個(gè)人和甲是否能夠交流,戊不能和甲交流,因此,B,C不成立,乙不能和甲交流,A錯(cuò)誤,因此,D正確.


【考點(diǎn)精析】掌握歸納推理是解答本題的根本,需要知道根據(jù)一類事物的部分對(duì)象具有某種性質(zhì),退出這類事物的所有對(duì)象都具有這種性質(zhì)的推理,叫做歸納推理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若點(diǎn)O和點(diǎn)F2(﹣ ,0)分別為雙曲線 =1(a>0)的中心和左焦點(diǎn),點(diǎn)P為雙曲線右支上的任意一點(diǎn),則 的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】先閱讀下列結(jié)論的證法,再解決后面的問題:
已知 ,求證: .
【證明】構(gòu)造函數(shù) ,則 ,
因?yàn)閷?duì)一切 ,恒有 .
所以 ,從而得 .
(1)若 ,請(qǐng)寫出上述結(jié)論的推廣式;
(2)參考上述解法,對(duì)你推廣的結(jié)論加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查喜歡旅游是否與性別有關(guān),調(diào)查人員就“是否喜歡旅游”這個(gè)問題,在火車站分別隨機(jī)調(diào)研了 名女性或 名男性,根據(jù)調(diào)研結(jié)果得到如圖所示的等高條形圖.

(1)完成下列 列聯(lián)表:

喜歡旅游

不喜歡旅游

估計(jì)

女性

男性

合計(jì)


(2)能否在犯錯(cuò)誤概率不超過 的前提下認(rèn)為“喜歡旅游與性別有關(guān)”.
附:

/td>

參考公式:
,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】假設(shè)關(guān)于某種設(shè)備的使用年限 (年)與所支出的維修費(fèi)用 (萬元)有如下統(tǒng)計(jì)資料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0

已知, .

,

(1)求, ;

(2) 具有線性相關(guān)關(guān)系,求出線性回歸方程;

(3)估計(jì)使用年限為10年時(shí),維修費(fèi)用約是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系 中,以 為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系.曲線 的極坐標(biāo)方程為 ,曲線 的參數(shù)方程為 為參數(shù)), .
(Ⅰ)求曲線 的直角坐標(biāo)方程,并判斷該曲線是什么曲線?
(Ⅱ)設(shè)曲線 與曲線 的交點(diǎn)為 , ,當(dāng) 時(shí),求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線lx2y2m20

(1)求過點(diǎn)(2,3)且與直線l垂直的直線的方程;

(2)若直線l與兩坐標(biāo)軸所圍成的三角形的面積大于4,求實(shí)數(shù)m的取值范圍.

【答案】(1);(2)

【解析】試題分析:(1)由直線的斜率為,可得所求直線的斜率為,代入點(diǎn)斜式方程,可得答案;(2)直線與兩坐標(biāo)軸的交點(diǎn)分別為,則所圍成的三角形的面積為,根據(jù)直線與兩坐標(biāo)軸所圍成的三角形的面積為大于,構(gòu)造不等式,解得答案.

試題解析:(1)與直線l垂直的直線的斜率為-2,

因?yàn)辄c(diǎn)(23)在該直線上,所以所求直線方程為y3=-2(x2),

故所求的直線方程為2xy70

(2) 直線l與兩坐標(biāo)軸的交點(diǎn)分別為(-2m+2,0),(0,m-1),

則所圍成的三角形的面積為×|-2m+2|×|m-1|.

由題意可知×|-2m+2|×|m-1|>4,化簡(jiǎn)得(m-1)2>4,

解得m>3或m<-1,

所以實(shí)數(shù)m的取值范圍是(-,-1)∪(3,+∞)

【方法點(diǎn)睛】本題主要考查直線的方程,兩條直線平行與斜率的關(guān)系,屬于簡(jiǎn)單題. 對(duì)直線位置關(guān)系的考查是熱點(diǎn)命題方向之一,這類問題以簡(jiǎn)單題為主,主要考查兩直線垂直與兩直線平行兩種特殊關(guān)系:在斜率存在的前提下,(1 ;(2,這類問題盡管簡(jiǎn)單卻容易出錯(cuò),特別是容易遺忘斜率不存在的情況,這一點(diǎn)一定不能掉以輕心.

型】解答
結(jié)束】
18

【題目】在平面直角坐標(biāo)系中,已知經(jīng)過原點(diǎn)O的直線與圓交于兩點(diǎn)。

(1)若直線與圓相切,切點(diǎn)為B,求直線的方程;

(2)若,求直線的方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】電視連續(xù)劇《人民的名義》自2017年3月28日在湖南衛(wèi)視開播以來,引發(fā)各方關(guān)注,收視率、點(diǎn)擊率均占據(jù)各大排行榜首位.我們用簡(jiǎn)單隨機(jī)抽樣的方法對(duì)這部電視劇的觀看情況進(jìn)行抽樣調(diào)查,共調(diào)查了600人,得到結(jié)果如下:其中圖1是非常喜歡《人民的名義》這部電視劇的觀眾年齡的頻率分布直方圖;表1是不同年齡段的觀眾選擇不同觀看方式的人數(shù).
表1

觀看方式
年齡(歲)

電視

網(wǎng)絡(luò)

150

250

120

80


求:(I)假設(shè)同一組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替,求非常喜歡《人民的名義》這部電視劇的觀眾的平均年齡;
(II)根據(jù)表1,通過計(jì)算說明我們是否有99%的把握認(rèn)為觀看該劇的方式與年齡有關(guān)?

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=cos2x的圖象向左平移 個(gè)單位,得到函數(shù)y=f(x)cosx的圖象,則f(x)的表達(dá)式可以是(
A.f(x)=﹣2sinx
B.f(x)=2sinx
C.f(x)= sin2x
D.f(x)= (sin2x+cos2x)

查看答案和解析>>

同步練習(xí)冊(cè)答案