【題目】某村共有100戶農(nóng)民,且都從事蔬菜種植,平均每戶的年收入為2萬元.為了調(diào)整產(chǎn)業(yè)結(jié)構(gòu),該鎮(zhèn)政府決定動(dòng)員部分農(nóng)民從事蔬菜加工.據(jù)估計(jì),若能動(dòng)員戶農(nóng)民從事蔬菜加工,則剩下的繼續(xù)從事蔬菜種植的農(nóng)民平均每戶的年收入比上一年提高,而從事蔬菜加工的農(nóng)民平均每戶的年收入為萬元.

1)在動(dòng)員戶農(nóng)民從事蔬菜加工后,要使從事蔬菜種植的農(nóng)民的總年收入不低于動(dòng)員前100戶農(nóng)民的總年收入,求的取值范圍;

2)在(1)的條件下,要使這100戶農(nóng)民中從事蔬菜加工的農(nóng)民的總年收入始終不高于從事蔬菜種植的農(nóng)民的總年收入,求的最大值.

【答案】1;(29.

【解析】

1)根據(jù)題意,表示出動(dòng)員戶農(nóng)民從事蔬菜加工后農(nóng)民的總年收入,動(dòng)員前農(nóng)民的總年收入,再解不等式.

2)轉(zhuǎn)化成恒成立問題,再分離變量,轉(zhuǎn)化成函數(shù)的最值問題.

解:(1)動(dòng)員戶農(nóng)民從事蔬菜加工后,農(nóng)民的總年收入為

由題得

2)由題恒成立,其中,

恒成立,又因?yàn)?/span>,

當(dāng)且僅當(dāng)時(shí)等號(hào)成立,所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,為平行四邊形,,平面,且,點(diǎn)的中點(diǎn).

1)求證:平面

2)在線段(不含端點(diǎn))是否存在一點(diǎn),使得二面角的余弦值為?若存在,確定的位置;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,,,,PA=PD=CD=BC=1.

(1)求證:平面平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),分別是橢圓右頂點(diǎn)與上頂點(diǎn),坐標(biāo)原點(diǎn)到直線的距離為,且點(diǎn)是圓的圓心,動(dòng)直線與橢圓交于兩點(diǎn).

1)求橢圓的方程;

2)若點(diǎn)在線段上,,且當(dāng)取最小值時(shí)直線與圓相切,求的值;

3)若直線與圓分別交于,兩點(diǎn),點(diǎn)在線段上,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且存在,使得,設(shè),,

)證明單調(diào)遞增;

)求證:;

)記,其前項(xiàng)和為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國(guó)古代的四書是指:《大學(xué)》、《中庸》、《論語(yǔ)》、《孟子》,甲、乙、丙、丁名同學(xué)從中各選一書進(jìn)行研讀,已知四人選取的書恰好互不相同,且甲沒有選《中庸》,乙和丙都沒有選《論語(yǔ)》,則名同學(xué)所有可能的選擇有______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過拋物線y24x焦點(diǎn)F的直線與拋物線交于P,Q兩點(diǎn),M為線段PF的中點(diǎn),連接OM,則△OMQ的最小面積為(

A.1B.C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)若,是方程的兩個(gè)不同的實(shí)數(shù)根,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(Ⅰ)討論函數(shù)上的單調(diào)性;

(Ⅱ)判斷當(dāng)時(shí),的圖象公切線的條數(shù),并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案