【題目】德國數(shù)學(xué)家科拉茨1937年提出了一個著名的猜想:任給一個正整數(shù)n,如果n是偶數(shù),就將它減半(即);如果n是奇數(shù),則將它乘31(即3n+1),不斷重復(fù)這樣的運算,經(jīng)過有限步后,一定可以得到1. 對于科拉茨猜想,目前誰也不能證明,也不能否定,現(xiàn)在請你研究:如果對正整數(shù)n(首項)按照上述規(guī)則施行變換后的第8項為1(注:l可以多次出現(xiàn)),則n的所有不同值的個數(shù)為

A. 4 B. 6 C. 8 D. 32

【答案】B

【解析】分析:利用第八項為1出發(fā),按照規(guī)則,逆向逐項即可求解的所有可能的取值.

詳解:如果正整數(shù)按照上述規(guī)則施行變換后第八項為1,

則變換中的第7項一定為2,

變換中的第6項一定為4,

變換中的第5項可能為1,也可能是8,

變換中的第4項可能是2,也可能是16,

變換中的第4項為2時,變換中的第3項是4,變換中的第2項是18,變換中的第1項是26,

變換中的第4項為16時,變換中的第3項是325,變換中的第2項是64108,變換中的第1項是1282120,或3,

的所有可能的取值為,共6個,故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)甲、乙兩種產(chǎn)品所得利潤分別為(萬元),它們與投入資金(萬元)的關(guān)系有如下公式:,,今將200萬元資金投入生產(chǎn)甲、乙兩種產(chǎn)品,并要求對甲、乙兩種產(chǎn)品的投入資金都不低于25萬元.

(Ⅰ)設(shè)對乙種產(chǎn)品投入資金(萬元),求總利潤(萬元)關(guān)于的函數(shù)關(guān)系式及其定義域;

(Ⅱ)如何分配投入資金,才能使總利潤最大,并求出最大總利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中:

①若,滿足,則的最大值為4;

②若,則函數(shù)的最小值為3;

③若,滿足,則的最大值為;

④若,滿足,則的最小值為2;

⑤函數(shù)的最小值為9.

正確的________.(把你認為正確的序號全部寫上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知變量之間的線性回歸方程為,且變量之間的一組相關(guān)數(shù)據(jù)如表所示,則下列說法錯誤的是( 。

x

6

8

10

12

y

6

m

3

2

A. 變量之間呈現(xiàn)負相關(guān)關(guān)系

B. 的值等于5

C. 變量之間的相關(guān)系數(shù)

D. 由表格數(shù)據(jù)知,該回歸直線必過點(9,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著人們生活水平的不斷提高,家庭理財越來越引起人們的重視.某一調(diào)查機構(gòu)隨機調(diào)查了5個家庭的月收入與月理財支出(單位:元)的情況,如下表所示:

月收入(千元)

8

10

9

7

11

月理財支出(千元)

(I)在下面的坐標系中畫出這5組數(shù)據(jù)的散點圖;

(II)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(III)根據(jù)(II)的結(jié)果,預(yù)測當一個家庭的月收入為元時,月理財支出大約是多少元?

(附:回歸直線方程中,.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐S ABCD中,平面SAD⊥平面ABCD.四邊形ABCD為正方形,

(1)求證:CD⊥平面SAD.

(2)若SA=SD,點M為BC的中點,在棱SC上是否存在點N,使得平面DMN⊥平面ABCD?若存在,請說明其位置,并加以證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=ax4lnx+bx4﹣cx0)在x=1處取得極值﹣3﹣c,其中ab,c為常數(shù).

1)試確定a,b的值;

2)討論函數(shù)fx)的單調(diào)區(qū)間;

3)若對任意x0,不等式fx≥﹣2c2恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,第一象限內(nèi)有定點和射線,已知,的傾斜角分別為,,, 軸上的動點,共線.

(1)求點坐標(用表示);

(2)求面積關(guān)于的表達式;

(3)求面積的最小時直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),下列說法正確的是____________

①函數(shù)的定義域為;

②函數(shù)為奇函數(shù);

③函數(shù)的值域為;

④函數(shù)在定義域上為增函數(shù);

⑤對于,均有

查看答案和解析>>

同步練習(xí)冊答案