已知實數(shù),且按某種順序排列成等差數(shù)列.
(1)求實數(shù)的值;
(2)若等差數(shù)列的首項和公差都為,等比數(shù)列的首項和公比都為,數(shù)列的前項和分別為,且,求滿足條件的自然數(shù)的最大值.
(1)   (2)14
(1)解法一:由已知三個數(shù)有:, 不妨設(shè)排列成遞增的等差數(shù)列,則
①若依次成等差數(shù)列,則有解得,符合題意;
②若依次成等差數(shù)列,則有解得,由不符合題意;
綜上得.
解法二:分三種情況討論:
①若為等差中項,則有解得,符合題意;
②若為等差中項,則有解得,由不符合題意;
③若為等差中項,則有,即,方程無解;……6分
綜上得.(2)解:由(1)知,,
 ,
由已知可得,即,
,又,故的最大值為14.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)(2011•湖北)成等差數(shù)列的三個正數(shù)的和等于15,并且這三個數(shù)分別加上2、5、13后成為等比數(shù)列{bn}中的b3、b4、b5
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)數(shù)列{bn}的前n項和為Sn,求證:數(shù)列{Sn+}是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知正項數(shù)列中,其前項和為,且.
(1)求數(shù)列的通項公式;
(2)設(shè)是數(shù)列的前項和,是數(shù)列的前項和,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列滿足:,其中為實數(shù),為正整數(shù).
(1)對任意實數(shù),求證:不成等比數(shù)列;
(2)試判斷數(shù)列是否為等比數(shù)列,并證明你的結(jié)論.
(3)設(shè)為數(shù)列的前項和.是否存在實數(shù),使得對任意正整數(shù),都有?若存在,求的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列的各項均為正數(shù),記,,
 .
(1)若,且對任意,三個數(shù)組成等差數(shù)列,求數(shù)列的通項公式.
(2)證明:數(shù)列是公比為的等比數(shù)列的充分必要條件是:對任意,三個數(shù)組成公比為的等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等差數(shù)列前三項為,前項的和為
(1)求 ;
(2)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)數(shù)列的前項和為,若.則     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

首項為的等差數(shù)列,從第項起開始為正數(shù),則公差的取值范圍是(    ).   
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

數(shù)列…中的等于( )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案