【題目】某公司對(duì)旗下的甲、乙兩個(gè)門店在19月份的營(yíng)業(yè)額(單位:萬元)進(jìn)行統(tǒng)計(jì)并得到如圖折線圖.

下面關(guān)于兩個(gè)門店?duì)I業(yè)額的分析中,錯(cuò)誤的是( )

A.甲門店的營(yíng)業(yè)額折線圖具有較好的對(duì)稱性,故而營(yíng)業(yè)額的平均值約為32萬元

B.根據(jù)甲門店的營(yíng)業(yè)額折線圖可知,該門店?duì)I業(yè)額的平均值在[20,25]內(nèi)

C.根據(jù)乙門店的營(yíng)業(yè)額折線圖可知,其營(yíng)業(yè)額總體是上升趨勢(shì)

D.乙門店在這9個(gè)月份中的營(yíng)業(yè)額的極差為25萬元

【答案】A

【解析】

根據(jù)折線圖依次判斷每個(gè)選項(xiàng):甲門店的營(yíng)業(yè)額平均值遠(yuǎn)低于32萬元,A錯(cuò)誤,其他正確,得到答案.

對(duì)于A,甲門店的營(yíng)業(yè)額折線圖具有較好的對(duì)稱性,營(yíng)業(yè)額平均值遠(yuǎn)低于32萬元,A錯(cuò)誤.

對(duì)于B,甲門店的營(yíng)業(yè)額的平均值為21.6,

即該門店?duì)I業(yè)額的平均值在區(qū)間[2025]內(nèi),B正確.

對(duì)于C,根據(jù)乙門店的營(yíng)業(yè)額折線圖可知,其營(yíng)業(yè)額總體是上升趨勢(shì),C正確.

對(duì)于D,乙門店在這9個(gè)月中的營(yíng)業(yè)額最大值為30萬元,最小值為5萬元,

則極差為25萬元,D正確.

故選:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)若,求的最值;

2)若當(dāng)時(shí),,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某運(yùn)輸公司每天至少向某地運(yùn)送物質(zhì),該公司有8輛載重為型卡車與4輛載重為型卡車,有10名駕駛員,每輛卡車每天往返的次數(shù)為型卡車4次,型卡車3次;每輛卡車每天往返的成本為型卡車320元,型卡車504元,你認(rèn)為該公司怎樣調(diào)配車輛,使運(yùn)費(fèi)成本最低,最低運(yùn)費(fèi)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人各射擊一次,擊中目標(biāo)的概率分別是,假設(shè)兩人射擊是否擊中目標(biāo),相互之間沒有影響;每次射擊是否擊中目標(biāo),相互之間沒有影響.

1)求甲射擊4次,至多1次未擊中目標(biāo)的概率;

2)求兩人各射擊4次,甲恰好擊中目標(biāo)2次且乙恰好擊中目標(biāo)3次的概率;

3)假設(shè)某人連續(xù)2次未擊中目標(biāo),則停止射擊,求乙恰好射擊5次后被中止射擊的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 在平行四邊形ABCD中,A(1,1),=(6,0),點(diǎn)M是線段AB的中點(diǎn),線段CMBD交于點(diǎn)P.(1) =(3,5),求點(diǎn)C的坐標(biāo);(2) 當(dāng)||=||時(shí),求點(diǎn)P的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知0m2,動(dòng)點(diǎn)M到兩定點(diǎn)F1(﹣m,0),F2m,0)的距離之和為4,設(shè)點(diǎn)M的軌跡為曲線C,若曲線C過點(diǎn).

1)求m的值以及曲線C的方程;

2)過定點(diǎn)且斜率不為零的直線l與曲線C交于A,B兩點(diǎn).證明:以AB為直徑的圓過曲線C的右頂點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是否存在常數(shù)a,b,c,使等式N+都成立,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】4位同學(xué)在同一天的上午、下午參加“身高與體重”“立定跳遠(yuǎn)”“肺活量”“握力”“臺(tái)階”5個(gè)項(xiàng)目的測(cè)試,每位同學(xué)上午、下午各測(cè)試1個(gè)項(xiàng)目,且不重復(fù).若上午不測(cè)“握力”項(xiàng)目,下午不測(cè)“臺(tái)階”項(xiàng)目,其余項(xiàng)目上午、下午都各測(cè)試1人,則不同的安排方式有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(3’+7’+8’)已知以a1為首項(xiàng)的數(shù)列{an}滿足:an1.

1當(dāng)a11,c1,d3時(shí),求數(shù)列{an}的通項(xiàng)公式

2當(dāng)0a11,c1,d3時(shí),試用a1表示數(shù)列{an}的前100項(xiàng)的和S100

3當(dāng)0a1m是正整數(shù)),c,d3m時(shí),求證:數(shù)列a2,a3m+2,a6m+2,a9m+2成等比數(shù)列當(dāng)且僅當(dāng)d3m.

查看答案和解析>>

同步練習(xí)冊(cè)答案