【題目】探月工程“嫦娥四號(hào)”探測(cè)器于2018128日成功發(fā)射,實(shí)現(xiàn)了人類(lèi)首次月球背面軟著陸.以嫦娥四號(hào)為任務(wù)圓滿(mǎn)成功為標(biāo)志,我國(guó)探月工程四期和深空探測(cè)工程全面拉開(kāi)序幕.根據(jù)部署,我國(guó)探月工程到2020年前將實(shí)現(xiàn)“繞、落、回”三步走目標(biāo).為了實(shí)現(xiàn)目標(biāo),各科研團(tuán)隊(duì)進(jìn)行積極的備戰(zhàn)工作.某科研團(tuán)隊(duì)現(xiàn)正準(zhǔn)備攻克甲、乙、丙三項(xiàng)新技術(shù),甲、乙、丙三項(xiàng)新技術(shù)獨(dú)立被攻克的概率分別為,若甲、乙、丙三項(xiàng)新技術(shù)被攻克,分別可獲得科研經(jīng)費(fèi)萬(wàn),萬(wàn),萬(wàn).若其中某項(xiàng)新技術(shù)未被攻克,則該項(xiàng)新技術(shù)沒(méi)有對(duì)應(yīng)的科研經(jīng)費(fèi).

1)求該科研團(tuán)隊(duì)獲得萬(wàn)科研經(jīng)費(fèi)的概率;

2)記該科研團(tuán)隊(duì)獲得的科研經(jīng)費(fèi)為隨機(jī)變量,求的分布列與數(shù)學(xué)期望.

【答案】1;(2)詳見(jiàn)解析.

【解析】

1)記該甲、乙、丙三項(xiàng)新技術(shù)被攻克分別為事件,則,,,要獲得萬(wàn)科研經(jīng)費(fèi),則分兩類(lèi),一是攻克甲,乙、丙未攻克,二是甲未攻克,乙丙攻克求解.

2所有可能的取值為,分布求得相應(yīng)概率,列出分布列,再求期望.

1)記該甲、乙、丙三項(xiàng)新技術(shù)被攻克分別為事件,

,,

該科研團(tuán)隊(duì)獲得萬(wàn)科研經(jīng)費(fèi)的概率為.

2所有可能的取值為

,

,

,

.

所以隨機(jī)變量的分布列為:

0

20

40

60

80

100

120

所以(萬(wàn)).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,正四棱錐中,為底面正方形的中心,側(cè)棱與底面所成的角的正切值為

1)求側(cè)面與底面所成的二面角的大。

2)若的中點(diǎn),求異面直線(xiàn)所成角的正切值;

3)問(wèn)在棱上是否存在一點(diǎn),使⊥側(cè)面,若存在,試確定點(diǎn)的位置;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

如圖,長(zhǎng)方體ABCDA1B1C1D1的底面ABCD是正方形,點(diǎn)E在棱AA1上,BEEC1.

1)證明:BE⊥平面EB1C1;

2)若AE=A1E,求二面角BECC1的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解甲、乙兩個(gè)快遞公司的工作狀況,假設(shè)同一個(gè)公司快遞員的工作狀況基本相同,現(xiàn)從甲、乙兩公司各隨機(jī)抽取一名快遞員,并從兩人某月(30天)的快遞件數(shù)記錄結(jié)果中隨機(jī)抽取10天的數(shù)據(jù),制表如圖:

每名快遞員完成一件貨物投遞可獲得的勞務(wù)費(fèi)情況如下:甲公司規(guī)定每件4.5元;乙公司規(guī)定每天35件以?xún)?nèi)(含35件)的部分每件4元,超出35件的部分每件7.

1)根據(jù)表中數(shù)據(jù)寫(xiě)出甲公司員工A在這10天投遞的快遞件數(shù)的平均數(shù)和眾數(shù);

2)為了解乙公司員工B的每天所得勞務(wù)費(fèi)的情況,從這10天中隨機(jī)抽取1天,他所得的勞務(wù)費(fèi)記為X(單位:元),求X的分布列和數(shù)學(xué)期望;

3)根據(jù)表中數(shù)據(jù)估算兩公司的每位員工在該月所得的勞務(wù)費(fèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若上存在極大值,求的取值范圍;

2)若軸是曲線(xiàn)的一條切線(xiàn),證明:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形為正方形,四邊形為矩形,且平面與平面互相垂直.若多面體的體積為,則該多面體外接球表面積的最小值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中正確的有( )

①常數(shù)數(shù)列既是等差數(shù)列也是等比數(shù)列;②在中,若,則為直角三角形;③若為銳角三角形的兩個(gè)內(nèi)角,則;④若為數(shù)列的前項(xiàng)和,則此數(shù)列的通項(xiàng).

A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)為圓上的動(dòng)點(diǎn),點(diǎn)軸上的投影為,點(diǎn)為線(xiàn)段AB的中點(diǎn),設(shè)點(diǎn)的軌跡為

1)求點(diǎn)的軌跡的方程;

2)已知直線(xiàn)交于兩點(diǎn),,若直線(xiàn)的斜率之和為3,直線(xiàn)是否恒過(guò)定點(diǎn)?若是,求出定點(diǎn)的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿(mǎn)足為等比數(shù)列,且

1)求

2)設(shè),記數(shù)列的前項(xiàng)和為

①求;

②求正整數(shù) k,使得對(duì)任意均有.

查看答案和解析>>

同步練習(xí)冊(cè)答案