15.計算
(1)(2$\frac{3}{5}$)0+2-2•(2$\frac{1}{4}$)${\;}^{-\frac{1}{2}}$-(0.01)0.5
(2)(lg2)2+lg2•lg50+lg25;
(3)$\frac{sin110°sin20°}{co{s}^{2}25°-si{n}^{2}25°}$.

分析 (1)根據(jù)指數(shù)冪的運算性質(zhì)計算即可,
(2)根據(jù)對數(shù)的運算性質(zhì)計算即可,
(3)根據(jù)二倍角公式和誘導公式計算即可

解答 解:(1)原式=1+$\frac{1}{4}$×$\frac{2}{3}$-$\frac{1}{10}$=1+$\frac{1}{6}$-$\frac{1}{10}$=$\frac{16}{15}$,
(2)原式=lg2(lg2+lg50)+lg25=2lg2+2lg5=2,
(3)原式=$\frac{cos20°sin20°}{cos50°}$=$\frac{\frac{1}{2}sin40°}{cos50°}$=$\frac{1}{2}$

點評 本題考查了指數(shù)冪的運算性質(zhì)和對數(shù)的運算性質(zhì)以及三角函數(shù)的化簡,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

5.設(shè)函數(shù)f(x)=$\left\{{\begin{array}{l}{x-1,x>0}\\{0,x=0}\\{x+1,x<0}\end{array}}$,則f(f(1))的值為0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.對于函數(shù)f(x)=$\left\{\begin{array}{l}{sinπx,x∈[0,2]}\\{\frac{1}{2}f(x-2),x∈(2,+∞)}\end{array}\right.$,有下列3個命題:
①任取x1、x2∈[0,+∞),都有|f(x1)-f(x2)|≤2恒成立;
②f(x)=2kf(x+2k)(k∈N*),對于一切x∈[0,+∞)恒成立;
③函數(shù)y=f(x)-ln(x-1)在(1,+∞)上有3個零點;
則其中所有真命題的序號是①③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=lnx+ax(a∈R).
(1)當a=-$\frac{1}{3}$,求函數(shù)f(x)在區(qū)間[e,e2]上的極值;
(2)當a=1時,函數(shù)g(x)=f(x)-$\frac{2}{t}$x2只有一個零點,求正數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知△ABC的面積S滿足2-$\sqrt{3}$≤S≤1,且$\overrightarrow{AC}$•$\overrightarrow{CB}$=-2,∠ACB=θ.
(1)若$\overrightarrow m$=(sin2A,cos2A),$\overrightarrow n$=(cos2B,sin2B),求|$\overrightarrow m$+2$\overrightarrow n$|的取值范圍;
(2)求函數(shù)f(θ)=sin(θ+$\frac{π}{4}$)-4$\sqrt{3}$sinθcosθ+cos(θ-$\frac{π}{4}$)-2的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.一個等差數(shù)列的項數(shù)為2n,若a1+a3+…+a2n-1=90,a2+a4+…+a2n=72,且a1-a2n=33,則該數(shù)列的公差是( 。
A.3B.-3C.-2D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.設(shè)關(guān)于x的不等式x(x-a-1)<0(a∈R)的解集為M,不等式x2-2x-3≤0的解集為N.
(1)當a=1時,求集合M;
(2)若a>-1時,M⊆N,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.圓(x+1)2+y2=1的圓心到直線y=$\sqrt{3}$x-$\sqrt{3}$的距離是( 。
A.0B.1C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,在三棱錐P-ABC中,PA=PC=5,PB=4,AB=BC=2$\sqrt{3}$,∠ACB=30°,PA=PC=5,PB=4,AB=BC=2$\sqrt{3}$,∠ACB=30°.
(1)求證:AC⊥PB;
(2)求三棱錐P-ABC的體積.

查看答案和解析>>

同步練習冊答案