精英家教網 > 高中數學 > 題目詳情

【題目】已知O為坐標原點,F是雙曲線 的左焦點,A,B分別為Γ的左、右頂點,P為Γ上一點,且PF⊥x軸,過點A的直線l與線段PF交于點M,與y軸交于點E,直線 BM與y軸交于點N,若|OE|=2|ON|,則 Γ的離心率為(
A.3
B.2
C.
D.

【答案】A
【解析】解:∵PF⊥x軸, ∴設M(﹣c,0),則A(﹣a,0),B(a,0),
AE的斜率k= ,則AE的方程為y= (x+a),
令x=0,則y= ,即E(0, ),
BN的斜率k=﹣ ,則AE的方程為y=﹣ (x﹣a),
令x=0,則y= ,即N(0, ),
∵|OE|=2|ON|,
∴2| |=| |,
= ,
則2(c﹣a)=a+c,
即c=3a,
則離心率e= =3,
故選:A

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,正方形ACDE所在的平面與平面ABC垂直,M是CE和AD的交點,AC⊥BC,且AC=BC.
(Ⅰ)求證:AM⊥平面EBC;
(Ⅱ)求二面角A﹣EB﹣C的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在研究函數 f ( x )= 的性質時,某同學受兩點間距離公式啟發(fā),將f(x)變形為f(x)= ,并給出關于函數f(x)以下五個描述:
①函數 f(x)的圖象是中心對稱圖形;
②函數 f(x)的圖象是軸對稱圖形;
③函數 f(x)在[0,6]上是增函數;
④函數 f(x)沒有最大值也沒有最小值;
⑤無論m為何實數,關于x的方程 f(x)﹣m=0都有實數根.
其中描述正確的是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知x,y滿足線性約束條件 ,若z=x+4y的最大值與最小值之差為5,則實數λ的值為(
A.3
B.
C.
D.1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖長方體ABCD﹣A1B1C1D1的底面邊長為1,側棱長為2,E、F、G分別為CB1、CD1、AB的中點.
(Ⅰ)求證:FG∥面ADD1A1
(Ⅱ)求二面角B﹣EF﹣C的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}滿足a1=1,an+1=1﹣ ,其中n∈N*
(Ⅰ)設bn= ,求證:數列{bn}是等差數列,并求出{an}的通項公式an;
(Ⅱ)設Cn= ,數列{CnCn+2}的前n項和為Tn , 是否存在正整數m,使得Tn 對于n∈N*恒成立,若存在,求出m的最小值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 f ( x )=sin(2x+ )+cos(2x+ )+2sin x cos x.
(Ⅰ)求函數 f ( x) 圖象的對稱軸方程;
(Ⅱ)將函數 y=f ( x) 的圖象向右平移 個單位,再將所得圖象上各點的橫坐標伸長為原來的 4 倍,縱坐標不變,得到函數 y=g ( x) 的圖象,求 y=g ( x) 在[ ,2π]上的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列說法正確的個數是( ) ①命題“x∈R,x3﹣x2+1≤0”的否定是“
②“ ”是“三個數a,b,c成等比數列”的充要條件;
③“m=﹣1”是“直線mx+(2m﹣1)y+1=0和直線3x+my+2=0垂直”的充要條件:
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設D為不等式組 表示的平面區(qū)域,對于區(qū)域D內除原點外的任一點A(x,y),則2x+y的最大值是 的取值范圍是

查看答案和解析>>

同步練習冊答案