【題目】已知函數(shù)f(x)=3x,f(a+2)=27,函數(shù)g(x)·2ax-4x的定義域為[0,2].

(1)a的值;

(2)若函數(shù)g(x)[0,2]上單調遞減,λ的取值范圍;

(3)若函數(shù)g(x)的最大值是,λ的值.

【答案】(1) a=1.

(2) (-∞,2].

(3) λ=.

【解析】

(1)由指數(shù)的運算法則可得a=1.

(2)(1)g(x)·2x-4x.由題意可知任取0≤x1<x2≤2,Δy=y2-y1<0,原問題等價于λ<對于x[0,2]恒成立.據(jù)此可得λ的取值范圍是(-∞,2].

(3)t=2x,換元可知1≤t≤4.y=-,1≤t≤4.結合二次函數(shù)的性質分類討論可得λ=.

(1)27=3a+2=33,a=1.

(2)(1),g(x)·2x-4x.

任取0≤x1<x2≤2,Δx=x2-x1>0,

g(x)[0,2]上是減函數(shù),

Δy=y2-y1<0,

Δy=y2-y1=g(x2)-g(x1)·-(λ·)

·-()2-[λ·-()2]

=()[λ-()]<0,對于x[0,2]恒成立.

>0,

λ-()<0對于x[0,2]恒成立,

λ<對于x[0,2]恒成立.

>2,

λ≤2.

λ的取值范圍是(-∞,2].

(3)t=2x,0≤x≤2,

1≤2x≤4.

1≤t≤4.

y=-t2+λt=-,1≤t≤4.

<1,λ<2,ymax=λ-1=,

λ=;

1≤≤4,2≤λ≤8,ymax=,

λ=[2,8]();

>4,λ>8,ymax=-16+4λ=,

λ=<8().綜上λ=.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】根據(jù)空氣質量指數(shù)API(為整數(shù))的不同,可將空氣質量分級如下表:

對某城市一年(365天)的空氣質量進行監(jiān)測,獲得的API數(shù)據(jù)按照區(qū)間 ,,,,進行分組,得到頻率分布條形圖如圖.

(1)求圖中的值;

(2)空氣質量狀況分別為輕微污染或輕度污染定為空氣質量Ⅲ級,求一年中空氣質量為Ⅲ級的天數(shù)

(3)小張到該城市出差一天,這天空氣質量為優(yōu)良的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若等比數(shù)列{an}的各項均為正數(shù),且a10a11+a9a12=2e5 , 則lna1+lna2+…lna20=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱長為1的正方體中,點分別是棱,的中點,是側面內一點,若 平面,則線段長度的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)f(x)的二次項系數(shù)為a(a<0).1,3是函數(shù)y=f(x)+2x的兩個零點.若方程f(x)+6a=0有兩個相等的根,f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體中,為棱的中點.

求證:(1)平面;

(2)平面平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為回饋顧客,某商場擬通過摸球兌獎的方式對1000位顧客進行獎勵,規(guī)定:每位顧客從一個裝有4個標有面值的球的袋中一次性隨機摸出2個球,球上所標的面值之和為該顧客所獲的獎勵額.
(1)若袋中所裝的4個球中有1個所標的面值為50元,其余3個均為10元,求:
①顧客所獲的獎勵額為60元的概率;
②顧客所獲的獎勵額的分布列及數(shù)學期望;
(2)商場對獎勵總額的預算是60000元,并規(guī)定袋中的4個球只能由標有面值10元和50元的兩種球組成,或標有面值20元和40元的兩種球組成.為了使顧客得到的獎勵總額盡可能符合商場的預算且每位顧客所獲的獎勵額相對均衡,請對袋中的4個球的面值給出一個合適的設計,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù),若存在,使成立,則稱的不動點.已知函數(shù) .

1)當,時,求函數(shù)的不動點;

2)若對任意實數(shù),函數(shù)恒有兩個相異的不動點,求的取值范圍;

3)在(2)的條件下,若的兩個不動點為,,且,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線,,,記,.

(1)當時,求原點關于直線的對稱點坐標;

(2)在中,求邊上中線長的最小值;

(3)求面積的取值范圍.

查看答案和解析>>

同步練習冊答案