【題目】已知二次函數(shù)f(x)的二次項(xiàng)系數(shù)為a(a<0).1,3是函數(shù)y=f(x)+2x的兩個零點(diǎn).若方程f(x)+6a=0有兩個相等的根,f(x)的解析式.

【答案】f(x)=-x2-x-.

【解析】

由題意,利用待定系數(shù)法,f(x)+2x=a(x-1)(x-3),f(x)+6a=ax2-(2+4a)x+9a=0.利用方程的判別式可得a=-.f(x)=-x2-x-.

因?yàn)?/span>1,3y=f(x)+2x的兩個零點(diǎn),a<0,

所以f(x)+2x=a(x-1)(x-3),

f(x)=a(x-1)(x-3)-2x=ax2-(2+4a)x+3a.

所以f(x)+6a=ax2-(2+4a)x+9a=0.

又方程有兩個相等的實(shí)根,

所以Δ=[-(2+4a)]2-4a·9a=0,

5a2-4a-1=0,

解得a=1(舍去)a=-.

a=-代入,

f(x)=-x2-x-.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某輪船公司的一艘輪船每小時花費(fèi)的燃料費(fèi)與輪船航行速度的平方成正比,比例系數(shù)為輪船的最大速度為15海里小時當(dāng)船速為10海里小時,它的燃料費(fèi)是每小時96元,其余航行運(yùn)作費(fèi)用(不論速度如何)總計是每小時150元假定運(yùn)行過程中輪船以速度v勻速航行.

k的值;

求該輪船航行100海里的總費(fèi)用燃料費(fèi)航行運(yùn)作費(fèi)用的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C: + =1,直線l: (t為參數(shù))
(1)寫出曲線C的參數(shù)方程,直線l的普通方程.
(2)過曲線C上任意一點(diǎn)P作與l夾角為30°的直線,交l于點(diǎn)A,求|PA|的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某學(xué)校準(zhǔn)備修建一個面積為2400平方米的矩形活動場地(圖中ABCD)的圍欄,按照修建要求,中間用圍墻EF隔開,使得ABEF為矩形,EFCD為正方形,設(shè)米,已知圍墻(包括EF)的修建費(fèi)用均為每米500元,設(shè)圍墻(包括EF)的修建總費(fèi)用為y元.

(1)求出y關(guān)于x的函數(shù)解析式及x的取值范圍;

(2)當(dāng)x為何值時,圍墻(包括EF)的修建總費(fèi)用y最小?并求出y的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的角所對的邊份別為,且

1求角的大小;

2,求的周長的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=3x,f(a+2)=27,函數(shù)g(x)·2ax-4x的定義域?yàn)?/span>[0,2].

(1)a的值;

(2)若函數(shù)g(x)[0,2]上單調(diào)遞減,λ的取值范圍;

(3)若函數(shù)g(x)的最大值是,λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓經(jīng)過,,三點(diǎn),是線段上的動點(diǎn),,是過點(diǎn)且互相垂直的兩條直線,其中軸于點(diǎn)交圓、兩點(diǎn).

(1)若,求直線的方程;

(2)若是使恒成立的最小正整數(shù),求三角形的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知矩陣A的逆矩陣A1=( ).
(1)求矩陣A;
(2)求矩陣A1的特征值以及屬于每個特征值的一個特征向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩個不相等的非零向量 , ,兩組向量 , , , , , , , 均由2個 和3個 排列而成,記S= + + + + ,Smin表示S所有可能取值中的最小值.則下列命題正確的是(寫出所有正確命題的編號).
①S有5個不同的值;
②若 ,則Smin與| |無關(guān);
③若 ,則Smin與| |無關(guān);
④若| |>4| |,則Smin>0;
⑤若| |=2| |,Smin=8| |2 , 則 的夾角為

查看答案和解析>>

同步練習(xí)冊答案