【題目】(本小題滿分14分)如圖,三角形所在的平面與長方形所在的平面垂直,,,.
(1)證明:平面;
(2)證明:;
(3)求點到平面的距離.
【答案】(1)證明見解析;(2)證明見解析;(3).
【解析】
試題分析:(1)由四邊形是長方形可證,進而可證平面;(2)先證,再證平面,進而可證;(3)取的中點,連結和,先證平面,再設點到平面的距離為,利用可得的值,進而可得點到平面的距離.
試題解析:(1)因為四邊形是長方形,所以,因為平面,平面,所以平面
(2)因為四邊形是長方形,所以,因為平面平面,平面平面,平面,所以平面,因為平面,所以
(3)取的中點,連結和,因為,所以,在中,
,因為平面平面,平面平面,平面,所以平面,由(2)知:平面,由(1)知:,所以平面,因為平面,所以,設點到平面的距離為,因為,所以,即,所以點到平面的距離是
科目:高中數(shù)學 來源: 題型:
【題目】圓臺的上、下底面半徑分別為、,母線長,從圓臺母線的中點拉一條繩子繞圓臺側面轉到點(在下底面),求:
(1)繩子的最短長度;
(2)在繩子最短時,上底圓周上的點到繩子的最短距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù),如果存在實數(shù)使得,那么稱為的生成函數(shù).
(1)函數(shù),是否為的生成函數(shù)?說明理由;
(2)設,,當時生成函數(shù),求的對稱中心(不必證明);
(3)設,,取,,生成函數(shù),若函數(shù)的最小值是5,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法:
①將一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變;
②設有一個線性回歸方程,變量x增加1個單位時,y平均增加5個單位;
③設具有相關關系的兩個變量x,y的相關系數(shù)為r,則|r|越接近于0,x和y之間的線性相關程度越強;
④在一個2×2列聯(lián)表中,由計算得K2的值,則K2的值越大,判斷兩個變量間有關聯(lián)的把握就越大.
以上錯誤結論的個數(shù)為( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2-aln x(a∈R).
(1)若f(x)在x=2處取得極值,求a的值;
(2)求f(x)的單調區(qū)間;
(3)求證:當x>1時, x2+ln x<x3.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的離心率為,以短軸端點和焦點為頂點的四邊形的周長為.
(Ⅰ)求橢圓的標準方程及焦點坐標.
(Ⅱ)過橢圓的右焦點作軸的垂線,交橢圓于、兩點,過橢圓上不同于點、的任意一點,作直線、分別交軸于、兩點.證明:點、的橫坐標之積為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設是一個由和構成的行列的數(shù)表,且中所有數(shù)字之和不小于,所有這樣的數(shù)表構成的集合記為,記為的第行各數(shù)之和,為的第列各數(shù)之和,為、、,、、、、中的最大值.
(1)對如下數(shù)表,求的值;
(2)設數(shù)表,求的最小值;
(3)已知為正整數(shù),對于所有的,,且的任意兩行中最多有列各數(shù)之和為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,側面PAD是正三角形,側面底面ABCD,M是PD的中點.
(1)求證:平面PCD;
(2)求側面PBC與底面ABCD所成二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某手機生產廠商為迎接5G時代的到來,要生產一款5G手機,在生產之前,該公司對手機屏幕的需求尺寸進行社會調查,共調查了400人,將這400人按對手機屏幕的需求尺寸分為6組,分別是:,,,,,(單位:英寸),得到如下頻率分布直方圖:
其中,屏幕需求尺寸在的一組人數(shù)為50人.
(1)求a和b的值;
(2)用分層抽樣的方法在屏幕需求尺寸為和兩組人中抽取6人參加座談,并在6人中選擇2人做代表發(fā)言,則這2人來自同一分組的概率是多少?
(3)若以廠家此次調查結果的頻率作為概率,市場隨機調查兩人,這兩人屏幕需求尺寸分別在和的概率是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com