(本小題12分)已知函數(shù).(I)討論函數(shù)的單調(diào)性;(Ⅱ)若曲線上兩點A、B處的切線都與軸垂直,且線段AB與軸有公共點,求實數(shù)的取值范圍.
(Ⅰ)上是增函數(shù);在上是減函數(shù)  (Ⅱ)  [-1,0)∪[3,4].
由題設知.令.
當(i)a>0時, 上是增函數(shù);在上是減函數(shù);
(i i)當a<0時,上是增函數(shù);在上是減函數(shù);
(Ⅱ)由(Ⅰ)的討論及題設知,曲線上的兩點A、B的縱坐標為函數(shù)的極值,且函數(shù)處分別是取得極值,.
因為線段AB與x軸有公共點,所以.
.所以.解得 -1≤a<0或3≤a≤4.
即所求實數(shù)a的取值范圍是[-1,0)∪[3,4].
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù),,其中,將的最小值記為
(1)求的表達式;
(2)討論在區(qū)間內(nèi)的單調(diào)性并求極值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知,若,則的最小正周期_______________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)已知函數(shù),.
(Ⅰ)求函數(shù)的極值點;(Ⅱ)若函數(shù)上有零點,求的最大值;(Ⅲ)證明:當時,有成立;若),試問數(shù)列中是否存在?若存在,求出所有相等的兩項;若不存在,請說明理由.(為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)f(x)在定義域R內(nèi)可導,若f(x)=f(2-x),且當x∈(-∞,1)時,(x-1)<0,設a="f(0),b=" f(),c= f(3),則              (   )
A.a(chǎn)<b<cB.c<a<bC.c<b<aD.b<c<a

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知
(1)當a=1時,求的單調(diào)區(qū)間
(2)是否存在實數(shù)a,使的極大值為3?若存在,求出a的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

文已知函數(shù),在時取得極值,若對任意
都有 恒成立,求實數(shù)的取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(Ⅰ)求函數(shù)y=2xcosx的導數(shù);
(Ⅱ)已知A+B=
4
,且A,B≠kπ+
π
2
(k∈Z)

求證:(1+tanA)(1+tanB)=2.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù),若,則                 。

查看答案和解析>>

同步練習冊答案