已知等差數(shù)列的公差,它的前項和為,若,且成等比數(shù)列.(1) 求數(shù)列的通項公式;(2)設數(shù)列的前項和為,求證:.
(1);(2).
解析試題分析:(1)求通項公式的關鍵是求出,所以通過等差數(shù)列的求和公式和等比中項將兩個已知條件都轉(zhuǎn)化為的關系式,解出,就可以求出等差數(shù)列的通項公式了.(2)先用裂項相消法求出的值,再通過作差法看出數(shù)列是遞增數(shù)列,求出最大值和最小值,即得到證明.
試題解析:(1)數(shù)列是等差數(shù)列且,. ① 2分
成等比數(shù)列,即② 4分
由①,②解得或(舍去) 5分
6分
(2)證明;由(1)可得, 7分
所以. 8分
所以
. 10分
∵,∴ . 11分
∵,∴數(shù)列是遞增數(shù)列,∴ . 13分
∴. 14分
考點:1.等差數(shù)列的通項公式;2.裂項相消法求和.
科目:高中數(shù)學 來源: 題型:解答題
數(shù)列{an}是公比為的等比數(shù)列,且1-a2是a1與1+a3的等比中項,前n項和為Sn;數(shù)列{bn}是等差數(shù)列,b1=8,其前n項和Tn滿足Tn=n·bn+1(為常數(shù),且≠1).
(I)求數(shù)列{an}的通項公式及的值;
(Ⅱ)比較+++ +與Sn的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列中,點在直線上,且.
(Ⅰ)求證:數(shù)列是等差數(shù)列,并求;
(Ⅱ)設,數(shù)列的前項和為,,成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設Sn為等差數(shù)列{a n}的前n項和,已知a 9 =-2,S 8 =2.
(1)求首項a1和公差d的值;
(2)當n為何值時,Sn最大?并求出Sn的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設數(shù)列的前n項和為,點均在函數(shù)y=-x+12的圖像上.
(Ⅰ)寫出關于n的函數(shù)表達式;
(Ⅱ)求證:數(shù)列是等差數(shù)列;
(Ⅲ)求數(shù)列的前n項的和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com