已知遞增等差數(shù)列前3項(xiàng)的和為,前3項(xiàng)的積為8,
(1)求等差數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和。
(1)(2)
解析試題分析:本題第(1)問,要得到等差數(shù)列的通項(xiàng)公式,需要首項(xiàng)和公差,而由前3項(xiàng)的和為,前3項(xiàng)的積為8可得,這個可解出首項(xiàng)和公差,需要注意的是,由于數(shù)列遞增數(shù)列,則;第(2)問,在(1)中,已經(jīng)得到數(shù)列的通項(xiàng)公式,把它代入得:,進(jìn)而用錯位相減法得到,這種方法常用于求一般數(shù)列的通項(xiàng)公式和前n項(xiàng)和。
解:(1)等差數(shù)列的前三項(xiàng)為,則
解得
(2)
(1)
(2)
(1)
考點(diǎn):等差數(shù)列的前n項(xiàng)和.
點(diǎn)評:本題主要考查了等差數(shù)列性質(zhì)及通項(xiàng)公式、求和公式的應(yīng)用,屬于基礎(chǔ)性試題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列為遞增等差數(shù)列,且是方程的兩根.?dāng)?shù)列為等比數(shù)列,且.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列的前n項(xiàng)和為Sn,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)令,記數(shù)列的前項(xiàng)和為.求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列的公差,它的前項(xiàng)和為,若,且成等比數(shù)列.(1) 求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列的前項(xiàng)和為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列滿足:,的前項(xiàng)和為。
(1)求及;
(2)令(其中為常數(shù),且),求證數(shù)列為等比數(shù)列。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前項(xiàng)和(為正整數(shù))。
(1) 令,求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2) 令,,求使得成立的最小正整數(shù),并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知各項(xiàng)均不相等的等差數(shù)列的前三項(xiàng)和為18,是一個與無關(guān)的常數(shù),若恰為等比數(shù)列的前三項(xiàng),(1)求的通項(xiàng)公式.(2)記數(shù)列,的前三項(xiàng)和為,求證:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com