如圖,為坐標原點,橢圓的左右焦點分別為,離心率為;雙曲線的左右焦點分別為,離心率為,已知,且.
(1)求的方程;
(2)過點作的不垂直于軸的弦,的中點,當直線交于兩點時,求四邊形面積的最小值.

(1)   (2) 

解析試題分析:(1)利用橢圓和雙曲線之間的關系可以用分別表示雙曲線和橢圓的離心率和焦點,由題目即可得到之間的兩個方程,聯(lián)立方程消元即可求出的值,得到雙曲線和橢圓的標準方程.
(2)利用(1)求出焦點的坐標,設出弦的直線的方程,聯(lián)立直線與橢圓消得到關于的一元二次方程,再利用根與系數(shù)的關系得到兩點縱坐標之間的和與積,進而得到點的縱坐標帶入AB直線即可得到的橫坐標,進而求出直線的方程,即為直線的方程,聯(lián)立直線的方程得到的取值范圍和求出點的坐標得到的長度,利用點到直線的距離得到到直線的距離表達式,進而用表示四邊形的面積,利用不等式的性質和的取值范圍即可得到面積的最小值.
(1)由題可得,且,因為,且,所以,所以橢圓方程為,雙曲線的方程為.
(2)由(1)可得,因為直線不垂直于軸,所以設直線的方程為,聯(lián)立直線與橢圓方程可得,則,,則,因為在直線上,所以,則直線的方程為,聯(lián)立直線與雙曲線可得,,則,設點到直線的距離為,則到直線的距離也為,則,因為在直線的兩端,所以,
 ,又因為在直線上,所以,
則四邊形

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,已知拋物線,在此拋物線上一點到焦點的距離是3.
(1)求此拋物線的方程;
(2)拋物線的準線與軸交于點,過點斜率為的直線與拋物線交于兩點.是否存在這樣的,使得拋物線上總存在點滿足,若存在,求的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓過點,且離心率為.斜率為的直線與橢圓交于兩點,以為底邊作等腰三角形,頂點為.
(1)求橢圓的方程;
(2)求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C:)的左焦點為,離心率為.
(1)求橢圓C的標準方程;
(2)設O為坐標原點,T為直線上任意一點,過F作TF的垂線交橢圓C于點P,Q.當四邊形OPTQ是平行四邊形時,求四邊形OPTQ的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的一個焦點為,離心率為.
(1)求橢圓的標準方程;
(2)若動點為橢圓外一點,且點到橢圓的兩條切線相互垂直,求點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,設橢圓的左、右焦點分別為,點在橢圓上,,的面積為.
(1)求該橢圓的標準方程;
(2)設圓心在軸上的圓與橢圓在軸的上方有兩個交點,且圓在這兩個交點處的兩條切線相互垂直并分別過不同的焦點,求圓的半徑..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的離心率為,為橢圓在軸正半軸上的焦點,、兩點在橢圓上,且,定點.
(1)求證:當
(2)若當時有,求橢圓的方程;
(3)在(2)的橢圓中,當、兩點在橢圓上運動時,試判斷 是否有最大值,若存在,求出最大值,并求出這時兩點所在直線方程,若不存在,給出理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓經(jīng)過點,其離心率
(1)求橢圓的方程;
(2)過坐標原點作不與坐標軸重合的直線交橢圓兩點,過軸的垂線,垂足為,連接并延長交橢圓于點,試判斷隨著的轉動,直線的斜率的乘積是否為定值?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的左右焦點分別為,點為短軸的一個端點,.
(1)求橢圓的方程;
(2)如圖,過右焦點,且斜率為的直線與橢圓相交于兩點,為橢圓的右頂點,直線分別交直線于點,線段的中點為,記直線的斜率為.
求證: 為定值.

查看答案和解析>>

同步練習冊答案