(2012•東莞二模)將一顆骰子擲兩次,觀察出現(xiàn)的點(diǎn)數(shù),并記第一次出現(xiàn)的點(diǎn)數(shù)為m,第二次出現(xiàn)的點(diǎn)數(shù)為n,向量
p
=(m,n),
q
=(3,6),則向量
p
q
共線的概率為
1
12
1
12
分析:本題是一個(gè)古典概型,試驗(yàn)發(fā)生包含的事件是一顆骰子擲兩次,共有6×6種結(jié)果,滿足條件事件是向量共線,
根據(jù)向量共線的條件得到6m-3n=0即n=2m,列舉出所有的結(jié)果數(shù),得到概率.
解答:解:由題意知本題是一個(gè)古典概型,
∵試驗(yàn)發(fā)生包含的事件是一顆骰子擲兩次,共有6×6=36種結(jié)果,
滿足條件事件是向量
p
=(m,n)與
q
=(3,6)共線,
即6m-3n=0,
∴n=2m,
滿足這種條件的有(1,2)(2,4)(3,6),共有3種結(jié)果,
∴向量
p
q
共線的概率P=
3
36
=
1
12

故答案為:
1
12
點(diǎn)評(píng):本題考查古典概型及其概率公式,考查向量共線的充要條件,考查利用列舉法得到所有的滿足條件的事件數(shù),本題是一個(gè)比較簡(jiǎn)單的綜合題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•東莞二模)附加題:設(shè)函數(shù)f(x)=
1
4
x2+
1
2
x-
3
4
,對(duì)于正整數(shù)列{an},其前n項(xiàng)和為Sn,且Sn=f(an),n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)是否存在等比數(shù)列{bn},使得a1b1+a2b2+…+anbn=2n+1(2n-1)+2對(duì)一切正整數(shù)n都成立?若存在,請(qǐng)求出數(shù)列{bn}的通項(xiàng)公式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•東莞二模)甲、乙兩名運(yùn)動(dòng)員的5次測(cè)試成績(jī)?nèi)鐖D所示,設(shè)s1,s2分別表示甲、乙兩名運(yùn)動(dòng)員測(cè)試成績(jī)的標(biāo)準(zhǔn)差,
.
x1
.
x2
分別表示甲、乙兩名運(yùn)動(dòng)員測(cè)試成績(jī)的平均數(shù),則有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•東莞二模)對(duì)于函數(shù)
①f(x)=|x+2|,
②f(x)=(x-2)2
③f(x)=cos(x-2),
判斷如下兩個(gè)命題的真假:命題甲:f(x+2)是偶函數(shù);命題乙:f(x)在(-∞,2)上是減函數(shù),在(2,+∞)上是增函數(shù);能使命題甲、乙均為真的所有函數(shù)的序號(hào)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•東莞二模)設(shè)D是不等式組
x+2y≤10
2x+y≥3
0≤x≤4
y≥1
表示的平面區(qū)域,則D中的點(diǎn)P(x,y)到直線x+y=10距離的最大值是
4
2
4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•東莞二模)設(shè)復(fù)數(shù)z1=1+i,z2=2+bi,若z1•z2為實(shí)數(shù),則b=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案