【題目】如圖,的邊上異于一點,過點作直線截得的三角形與相似,那么這樣的直線可以作的條數(shù)是(

A. 1 B. 2 C. 3 D. 4

【答案】D

【解析】

過點P 作作PE∥BC,則△AEP∽△ACB(如圖1);作PE∥AC,則△BPE∽△BAC(如圖2);作PE,使AE:AB=AP:AC,則△AEP∽△ABC(如圖3);作PE,使BP:CB=BE:AB,則△BEP∽△BAC(如圖4),由此即可解答.

(1)如圖1,作PE∥BC,則△AEP∽△ACB;

(2)如圖2,作PE∥AC,則△BPE∽△BAC;

(3)如圖3,作PE,使AE:AB=AP:AC,則△AEP∽△ABC;

(4)如圖4,作PE,使BP:CB=BE:AB,則△BEP∽△BAC.

故選D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某園林專業(yè)戶計劃投資種植花卉及樹木,根據市場調查與預測,種植樹木的利潤y1與投資量x成正比例關系,種植花卉的利潤y2與投資量x的平方成正比例關系,并得到了表格中的數(shù)據.

投資量x(萬元)

2

種植樹木利潤y1(萬元)

4

種植花卉利潤y2(萬元)

2

(1)分別求出利潤y1與y2關于投資量x的函數(shù)關系式;

(2)如果這位專業(yè)戶以8萬元資金投入種植花卉和樹木,設他投入種植花卉金額m萬元,種植花卉和樹木共獲利利潤W萬元,直接寫出W關于m的函數(shù)關系式,并求他至少獲得多少利潤?他能獲取的最大利潤是多少?

(3)若該專業(yè)戶想獲利不低于22萬,在(2)的條件下,直接寫出投資種植花卉的金額m的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料,回答問題.

材料:為解方程x4-x2-6=0,可將方程變形為(x2)2-x2-6=0,然后設x2=y(tǒng),則(x2)2=y(tǒng)2,原方程化為y2-y-6=0①,

解得y1=-2,y2=3.

當y1=-2時,x2=-2無意義,舍去;當y2=3時,x2=3,解得x=±.

所以,原方程的解為x1,x2=-.

問題:

(1)在由原方程得到方程①的過程中,利用 法達到了降次的目的,體現(xiàn)了 的數(shù)學思想;

(2)利用本題的解題方法,解方程(x2-x)2-4(x2-x)-12=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,以直角三角形的各邊為邊分別向外作正方形,再把較小的兩張正方形紙片按圖2的方式放置在最大的正方形內,若知道圖中陰影部分的面積,則一定能求出(

A.直角三角形的面積B.最大正方形的面積

C.較小兩個正方形重疊部分的面積D.最大正方形與直角三角形的面積和

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,的中點,,分別是的三等分點,,分別交兩點,則等于(

A. 3:2:1 B. 4:2:1 C. 5:2:1 D. 5:3:2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知,,,是射線上的動點(點與點不重合),是線段的中點,連結,交線段于點,如果以,,為頂點的三角形與相似,則線段的長為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:四邊形ABCD的對角線AC,BD相交于點O,給出下列4個條件:①AB∥CD;②OA=OC;③AB=CD;④AD∥BC.從中任取兩個條件,能推出四邊形ABCD是平行四邊形的概率是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,D、E分別是等邊三角形ABC的邊AB、AC上的點,且AE=CDCE、BD交于點P.

(1)求證:CE=BD.

(2)求∠BPE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某網絡約車公司近期推出了”520專享服務計劃,即要求公司員工做到“5星級服務、2分鐘響應、0客戶投訴,為進一步提升服務品質,公司監(jiān)管部門決定了解單次營運里程的分布情況.老王收集了本公司的5000單次營運里程數(shù)據,這些里程數(shù)據均不超過25(公里),他從中隨機抽取了200個數(shù)據作為一個樣本,整理、統(tǒng)計結果如下表,并繪制了不完整的頻數(shù)分布直方圖(如圖).

組別

單次營運里程“x“(公里)

頻數(shù)

第一組

0<x≤5

72

第二組

5<x≤10

a

第三組

10<x≤15

26

第四組

15<x≤20

24

第五組

20<x≤25

30

根據統(tǒng)計表、圖提供的信息,解答下面的問題:

(1)①表中a=   ;②樣本中單次營運里程不超過15公里的頻率為   ③請把頻數(shù)分布直方圖補充完整;

(2)請估計該公司這5000單次營運里程超過20公里的次數(shù);

(3)為緩解城市交通壓力,維護交通秩序,來自某市區(qū)的4名網約車司機(31女)成立了交通秩序維護志愿小分隊,若從該小分隊中任意抽取兩名司機在某一路口維護交通秩序,請用列舉法(畫樹狀圖或列表)求出恰好抽到一男一女的概率.

查看答案和解析>>

同步練習冊答案