【題目】如圖,⊙O中的弦BC等于⊙O的半徑,延長(zhǎng)BC到D,使BC=CD,點(diǎn)A為優(yōu)弧BC上的一個(gè)動(dòng)點(diǎn),連接AD,AB,AC,過(guò)點(diǎn)D作DE⊥AB,交直線AB于點(diǎn)E,當(dāng)點(diǎn)A在優(yōu)弧BC上從點(diǎn)C運(yùn)動(dòng)到點(diǎn)B時(shí),則DE+AC的值的變化情況是( )
A.不變B.先變大再變小C.先變小再變大D.無(wú)法確定
【答案】B
【解析】
如圖,連接OA,OC,OB,EC,作OF⊥AC于F,根據(jù)直角三角形斜邊中線的性質(zhì)可得EC=CD=CB,根據(jù)等腰三角形的性質(zhì)可得∠CBE=∠CEB,∠AOF=∠COF,根據(jù)圓周角定理可得∠AOC=2∠ABC,利用外角性質(zhì)可得∠DCE=2∠CBE,即可證明∠AOC=∠DCE,利用SAS可證明△AOC≌△DCE,可得AC=DE,即可得出DE+AC=2AC,根據(jù)AC的變化即可得答案.
如圖,連接OA,OC,OB,EC,作OF⊥AC于F.
∵DE⊥AB,
∴∠DEB=90°,
∵DC=BC,
∴EC=CD=CB,
∵BC=OC=OB=OA,CD=BC,
∴OA=OC=CD=CE=CB,
∴∠CBE=∠CEB,
∵OF⊥AC,OA=OC,
∴∠AOF=∠COF,
∵∠AOC=2∠ABC,∠DCE=∠CEB+∠CBE=2∠CBE,
∴∠AOC=∠DCE,
∴△AOC≌△DCE(SAS),
∴AC=DE,
∴AC+DE=2AC,
觀察圖象可知AC的值先變大再變小,
故AC+DE的值先變大再變小,
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】石獅泰禾某童裝專(zhuān)賣(mài)店在銷(xiāo)售中發(fā)現(xiàn),一款童裝每件進(jìn)價(jià)為80元,銷(xiāo)售價(jià)為120元時(shí),每天可售出20件,為了迎接“十一”國(guó)慶節(jié),商店決定采取適當(dāng)?shù)慕祪r(jià)措施,以擴(kuò)大銷(xiāo)售量,增加利潤(rùn),經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),如果每件童裝降價(jià)1元,那么平均可多售出2件.
(1)設(shè)每件童裝降價(jià)x元時(shí),每天可銷(xiāo)售______ 件,每件盈利______ 元;(用x的代數(shù)式表示)
(2)每件童裝降價(jià)多少元時(shí),平均每天贏利1200元.
(3)要想平均每天贏利2000元,可能嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知k為實(shí)數(shù),關(guān)于x的方程為x2+(k+2)x+2k=1.
(1)判斷方程有無(wú)實(shí)數(shù)根.
(2)當(dāng)方程的根和k都是有理數(shù)時(shí),請(qǐng)直接寫(xiě)出其中k的1個(gè)值和相應(yīng)方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,AD、CE是高,連接DE.
(1)求證:BC=2DE;
(2)若∠BAC=50°,求∠ADE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,下圖是水平放置的破裂管道有水部分的截面.
⑴請(qǐng)你補(bǔ)全這個(gè)輸水管道的圓形截面;
⑵若這個(gè)輸水管道有水部分的水面寬AB=16cm,水面最深地方的高度為4cm,求這個(gè)圓形截面的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A是拋物線對(duì)稱(chēng)軸上的一點(diǎn),連接OA,以A為旋轉(zhuǎn)中心將AO逆時(shí)針旋轉(zhuǎn)90°得到AO′,當(dāng)O′恰好落在拋物線上時(shí),點(diǎn)A的坐標(biāo)為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=10.直角尺的直角頂點(diǎn)P在AD上滑動(dòng)時(shí)(點(diǎn)P與A,D不重合),一直角邊經(jīng)過(guò)點(diǎn)C,另一直角邊AB交于點(diǎn)E.
(1)求證:
(2)是否存在這樣的點(diǎn)P,使的周長(zhǎng)等于周長(zhǎng)的2倍?若存在,求出DP的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我校興趣小組同學(xué)為測(cè)量校外“御墅臨楓”的一棟電梯高層AB的樓高,從校前廣場(chǎng)的C處測(cè)得該座建筑物頂點(diǎn)A的仰角為45°,沿著C向上走到30米處的D點(diǎn).再測(cè)得頂點(diǎn)A的仰角為22°,已知CD的坡度:i=1:2,A、B、C、D在同一平面內(nèi),則高樓AB的高度為( )(參考數(shù)據(jù);sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)
A.60B.70C.80D.90
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】老師隨機(jī)抽查了本學(xué)期學(xué)生讀課外書(shū)冊(cè)數(shù)的情況,繪制成條形圖(圖1)和不完整的扇形圖(圖2),其中條形圖被墨跡遮蓋了一部分.
(1)求條形圖中被遮蓋的數(shù),并計(jì)算冊(cè)數(shù)的平均數(shù)和中位數(shù);
(2)隨后又補(bǔ)查了另外幾人,得知最少的讀了6冊(cè),將其與之前的數(shù)據(jù)合并后,發(fā)現(xiàn)冊(cè)數(shù)的中位數(shù)沒(méi)改變,則最多補(bǔ)查了__________人.從補(bǔ)查結(jié)果看,學(xué)生的讀書(shū)冊(cè)數(shù)的平均數(shù)與之前相比______________.(變大、變小、不變).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com