【題目】如圖,在矩形ABCD中,AB5,BC12,EBC的中點(diǎn).⊙O與邊BC相切于點(diǎn)E,并交邊AD于點(diǎn)M、N,AM3

1)求⊙O的半徑;

2)將矩形ABCD繞點(diǎn)E順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為≤90°).在旋轉(zhuǎn)的過程中,⊙O和矩形ABCD的邊是否能夠相切,若能,直接寫出相切時(shí),旋轉(zhuǎn)角的正弦值;若不能,請說明理由.

【答案】(1) O的半徑為3.4

【解析】

1)如圖①,連接EO并延長,交AD于點(diǎn)F,連接OM.根據(jù)矩形的性質(zhì)和切線的性質(zhì)求得FM=3,設(shè)⊙O的半徑為r,則OMOErOF5r.在RtOFM中,根據(jù)勾股定理即可求得半徑的長.

2)如圖②,A'B'與⊙O相切,切點(diǎn)為Q,此時(shí)旋轉(zhuǎn)角為∠BEB',作OPB'E,連接OQ,OE,易證∠POE=∠BEB'OQPB'OE,由(1)得OQPB'OE3.4,PE63.42.6,即sinBEB'sinPOE;如圖③,A'D'與⊙O相切,切點(diǎn)為Q,此時(shí)旋轉(zhuǎn)角為∠BEB',作OPB'E,連接OQ,OE,易證∠POE=∠BEB',OQOPA'B',由(1)得OQOE3.4,OP53.41.6,根據(jù)勾股定理,可得PE3,即sinBEB'sinPOE

解:(1)如圖①,連接EO并延長,交AD于點(diǎn)F,連接OM

OBC相切于點(diǎn)E,∴ OEBC

在矩形ABCD中,

ADBC,ADBC12,∠A=∠B=∠C=∠D90°

四邊形ABEF和四邊形DCEF是矩形.

AFBE,DFCE,EFAB5

BECE,∴ AFDF

OEBC,ADBC,∴ OFAD.∴ MFNF

AF6AM3,∴ FM3

設(shè)⊙O的半徑為r,則OMOErOF5r

RtOFM中,根據(jù)勾股定理,得32(5r)2r2

解這個(gè)方程,得r3.4

即⊙O的半徑為3.4

2

如圖②,A'B'與⊙O相切,切點(diǎn)為Q,此時(shí)旋轉(zhuǎn)角為∠BEB',作OPB'E,連接OQOE,

∵∠BEO90°,OPB'E

∴∠BEB'+PEO=90°,∠POE+PEO=90°

∴∠POE=∠BEB',OQPB'OE,

由(1)得OQPB'OE3.4PE63.42.6,即sinBEB'sinPOE;

如圖③,A'D'與⊙O相切,切點(diǎn)為Q,此時(shí)旋轉(zhuǎn)角為∠BEB',作OPB'E,連接OQ,OE

∵∠BEO90°,OPB'E

∴∠BEB'+PEO=90°,∠POE+PEO=90°

∴∠POE=∠BEB',OQOPA'B',由(1)得OQOE3.4,OP53.41.6,根據(jù)勾股定理,可得PE3,即sinBEB'sinPOE

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB4,BC5EBC邊上的一個(gè)動點(diǎn),DFAE,垂足為點(diǎn)F,連結(jié)CF

1)若AEBC

①求證:ABE≌△DFA;②求四邊形CDFE的周長;③求tanFCE的值;

2)探究:當(dāng)BE為何值時(shí),CDF是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】淮南牛肉湯是安徽知名地方小吃.某分店經(jīng)理發(fā)現(xiàn),當(dāng)每碗牛肉湯的售價(jià)為6元時(shí),每天能賣出500碗;當(dāng)每碗牛肉湯的售價(jià)每增加0.5元時(shí),每天就會少賣出20碗,設(shè)每碗牛肉湯的售價(jià)增加元時(shí),一天的營業(yè)額為元.

1)求的函數(shù)關(guān)系式(不要求寫出的取值范圍);

2)考慮到顧客可接受價(jià)格/碗的范圍是,且為整數(shù),不考慮其他因素,則該分店的牛肉湯每碗多少元時(shí),每天的牛肉湯營業(yè)額最大?最大營業(yè)額是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為考察甲、乙兩種農(nóng)作物的長勢,研究人員分別抽取了6株苗,測得它們的高度(單位:cm)如下:

甲:98,102100,100101,99;乙:100,103101,97,10099

1)你認(rèn)為哪種農(nóng)作物長得高一些?說明理由;

2)你認(rèn)為哪種農(nóng)作物長得更整齊一些?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,對角線ACBD相交于點(diǎn)O,ACBD,AC平分∠BAD

1)給出下列四個(gè)條件:①ABAD,②OBOD,③∠ACB=∠ACD,④ADBC,上述四個(gè)條件中,選擇一個(gè)合適的條件,使四邊形ABCD是菱形,這個(gè)條件是(填寫序號);

2)根據(jù)所選擇的條件,證明四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,BC4AC3.點(diǎn)P是斜邊AB上一點(diǎn),過點(diǎn)PPMAB交邊ACBC于點(diǎn)M.又過點(diǎn)PAC的平行線,與過點(diǎn)MPM的垂線交于點(diǎn)N.設(shè)邊APx,△PMN與△ABC重合部分圖形的周長為y

1AB   

2)當(dāng)點(diǎn)N在邊BC上時(shí),x   

3)求yx之間的函數(shù)關(guān)系式.

4)在點(diǎn)N位于BC上方的條件下,直接寫出過點(diǎn)N與△ABC一個(gè)頂點(diǎn)的直線平分△ABC面積時(shí)x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】海靜中學(xué)開展以“我最喜愛的職業(yè)”為主題的調(diào)查活動,圍繞“在演員、教師、醫(yī)生、律師、公務(wù)員共五類職業(yè)中,你最喜愛哪一類?(必選且只選一類)”的問題,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,將調(diào)查結(jié)果整理后繪制成如圖所示的不完整的統(tǒng)計(jì)圖,請你根據(jù)圖中提供的信息回答下列問題:

(1)本次調(diào)查共抽取了多少名學(xué)生?

(2)求在被調(diào)查的學(xué)生中,最喜愛教師職業(yè)的人數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若海靜中學(xué)共有1500名學(xué)生,請你估計(jì)該中學(xué)最喜愛律師職業(yè)的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC90°,BC邊在x軸正半軸上,中線BD的反向延長線交y軸負(fù)半軸于點(diǎn)E.雙曲線y一條分支經(jīng)過點(diǎn)A,若SBEC4,則k等于(  )

A. 4B. 8C. 12D. 16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,BDO的直徑,點(diǎn)A、CO上并位于BD的兩側(cè),∠ABC45°,連結(jié)CD、OA并延長交于點(diǎn)F,過點(diǎn)CO的切線交BD延長線于點(diǎn)E

1)求證:∠F=∠ECF;

2)當(dāng)DF6tanEBC,求AF的值.

查看答案和解析>>

同步練習(xí)冊答案