【題目】如圖,已知拋物線與軸交于、兩點(diǎn),與軸交于點(diǎn)

1)求拋物線的解析式;

2)點(diǎn)是第一象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)、不重合),過(guò)點(diǎn)軸于點(diǎn),交直線于點(diǎn),連接.設(shè)點(diǎn)的橫坐標(biāo)為,的面積為.求關(guān)于的函數(shù)解析式及自變量的取值范圍,并求出的最大值;

3)已知為拋物線對(duì)稱(chēng)軸上一動(dòng)點(diǎn),若是以為直角邊的直角三角形,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo).

【答案】1;(2,當(dāng)時(shí),有最大值,最大值;(3,

【解析】

1)由拋物線與x軸的兩個(gè)交點(diǎn)坐標(biāo)可設(shè)拋物線的解析式為y=ax+1)(x-3),將點(diǎn)C0,3)代入拋物線解析式中即可得出關(guān)于a一元一次方程,解方程即可求出a的值,從而得出拋物線的解析式;

2)設(shè)直線BC的函數(shù)解析式為y=kx+b.結(jié)合點(diǎn)B、點(diǎn)C的坐標(biāo)利用待定系數(shù)法求出直線BC的函數(shù)解析式,再由點(diǎn)D橫坐標(biāo)為m找出點(diǎn)D、點(diǎn)E的坐標(biāo),結(jié)合兩點(diǎn)間的距離公式以及三角形的面積公式求出函數(shù)解析式,利用配方法將S關(guān)于m的函數(shù)關(guān)系式進(jìn)行變形,從而得出結(jié)論;

3)先求出對(duì)稱(chēng)軸,設(shè)M(1,y),然后分分BM為斜邊和CM為斜邊兩種情況求解即可;

解:(1)∵拋物線與x軸交于A-1,0)、B3,0)兩點(diǎn),

∴設(shè)拋物線的解析式為y=ax+1)(x-3),

又∵點(diǎn)C0,3)在拋物線圖象上,

3=a×0+1×0-3),解得:a=-1

∴拋物線解析式為y=-x+1)(x-3=-x2+2x+3

∴拋物線解析式為;

2)設(shè)直線的函數(shù)解析式為,

直線過(guò)點(diǎn),,

,解得,

,

設(shè),

,

,

,

當(dāng)時(shí),有最大值,最大值;

3)∵,

∴對(duì)稱(chēng)軸為直線x=1,

設(shè)M(1,y),

CM2=1+(y-3)2=y2-6y+10,

BM2=y2+(1-3)2=y2+4,

BC2=9+9=18.

當(dāng)BM為斜邊時(shí),

y2-6y+10+18= y2+4

解得

y=4,

此時(shí)M(1,4);

當(dāng)CM為斜邊時(shí),

y2+4+18= y2-6y+10,

解得

y=-2,

此時(shí)M(1-2);

綜上可得點(diǎn)的坐標(biāo)為,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】汽車(chē)剎車(chē)后,還會(huì)繼續(xù)向前滑行一段距離,這段距離稱(chēng)為剎車(chē)距離剎車(chē)距離ym)與剎車(chē)時(shí)的車(chē)速xkm/h)的部分關(guān)系如表:

剎車(chē)時(shí)的車(chē)速

0

50

100

150

200

剎車(chē)距離

0

5.5

21

46.5

82

1)求出yx之間的函數(shù)關(guān)系式.

2)一輛車(chē)在限速120km/h的高速公路上行駛時(shí)出了事故,事后測(cè)得它的剎車(chē)距離為40.6m,問(wèn):該車(chē)在發(fā)生事故時(shí)是否超速行駛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在△ABC中,點(diǎn)D在邊BC上,AEBC,BEAD、AC分別相交于點(diǎn)F、G,

1)求證:△CAD∽△CBG

2)聯(lián)結(jié)DG,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,將∠ABC繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)一定角度后,BC的對(duì)應(yīng)邊B'C'CD邊于點(diǎn)G.連接BB'、CC'.若AD=7,CG=4,AB'=B'G,則

=__(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】消費(fèi)者在某火鍋店飯后買(mǎi)單時(shí)可以參與一個(gè)抽獎(jiǎng)游戲,規(guī)則如下:有張紙牌,它們的背面都是小豬佩奇頭像,正面為張笑臉、張哭臉.現(xiàn)將張紙牌洗勻后背面朝上擺放到桌上,然后讓消費(fèi)者去翻紙牌.

1)現(xiàn)小楊有一次翻牌機(jī)會(huì),若正面是笑臉的就獲獎(jiǎng),正面是哭臉的不獲獎(jiǎng),她從中隨機(jī)翻開(kāi)一張紙牌,小楊獲獎(jiǎng)的概率是________

2)如糶小楊、小月都有翻兩張牌的機(jī)會(huì),小楊先翻一張,放回后再翻一張;小月同時(shí)翻開(kāi)兩張紙牌.他們翻開(kāi)的兩張紙牌中只要出現(xiàn)一張笑臉就獲獎(jiǎng).他們誰(shuí)獲獎(jiǎng)的機(jī)會(huì)更大些?通過(guò)畫(huà)樹(shù)狀圖或列表法分析說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:方程cx2+bx+a0是一元二次方程ax2+bx+c0的倒方程.

1)已知x2x2+2x+c0的倒方程的解,求c的值;

2)若一元二次方程ax22x+c0無(wú)解,求證:它的倒方程也一定無(wú)解;

3)一元二次方程ax22x+c0a≠c)與它的倒方程只有一個(gè)公共解,它的倒方程只有一個(gè)解,求ac的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BD是平行四邊形ABCD的對(duì)角線,DEAB于點(diǎn)E,過(guò)點(diǎn)E的直線交BC于點(diǎn)G,且BGCG

1)求證:GDEG

2)若BDEG垂足為OBO2,DO4,畫(huà)出圖形并求出四邊形ABCD的面積.

3)在(2)的條件下,以O為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn)△GDO,得到△GD'O,點(diǎn)G′落在BC上時(shí),請(qǐng)直接寫(xiě)出GE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線經(jīng)過(guò),兩點(diǎn),與y軸交于點(diǎn)C,連接AB,AC,BC.

求拋物線的表達(dá)式;

求證:AB平分

拋物線的對(duì)稱(chēng)軸上是否存在點(diǎn)M,使得是以AB為直角邊的直角三角形,若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BD△ABC的角平分線,點(diǎn)E位于邊BC上,已知BDBABE的比例中項(xiàng).

(1)求證:CDE=ABC;

(2)求證:ADCD=ABCE.

查看答案和解析>>

同步練習(xí)冊(cè)答案