【題目】(1)、如圖(1),AB∥CD,點(diǎn)P在AB、CD外部,若∠B=40°,∠D=15°,則∠BPD °.
(2)、如圖(2),AB∥CD,點(diǎn)P在AB、CD內(nèi)部,則∠B,∠BPD,∠D之間有何數(shù)量關(guān)系?證明你的結(jié)論;
(3)、在圖(2)中,將直線AB繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)一定角度交直線CD于點(diǎn)M,如圖(3),若∠BPD=90°,∠BMD=40°,求∠B+∠D的度數(shù).
【答案】(1)、25°;(2)、∠BPD=∠B+∠D,理由見解析;(3)、50°.
【解析】
試題分析:(1)、根據(jù)AB∥CD得出∠BOD=∠B=40°,然后根據(jù)三角形外角的性質(zhì)得出∠BPD的度數(shù);(2)、過點(diǎn)P作PE∥AB,從而得出AB∥PE∥CD,根據(jù)平行線的性質(zhì)得出∠1=∠B,∠2=∠D,最后根據(jù)∠BPD=∠1+∠2得出答案;(3)、過點(diǎn)P作GP∥AB交CD于E,過點(diǎn)P作PF∥CD,根據(jù)平行線的性質(zhì)得出∠BMD=∠GED=∠GPF=50°,∠B=∠BPG,∠D=∠DPF,則∠B+∠D=∠BPG+∠DPF,從而得出答案.
試題解析:(1)、∵AB∥CD(已知) ∴∠BOD=∠B=40°(兩直線平行,內(nèi)錯(cuò)角相等)
∴∠P=∠BOD﹣∠D=40°﹣15°=25°(等式的性質(zhì))
(2)、∠BPD=∠B+∠D.理由如下:
過點(diǎn)P作PE∥AB ∵AB∥CD,PE∥AB(已知) ∴AB∥PE∥CD(平行于同一直線的兩條直線平行)
∴∠1=∠B,∠2=∠D(兩直線平行,內(nèi)錯(cuò)角相等) ∴∠BPD=∠1+∠2=∠B+∠D(等量代換)
(3)、過點(diǎn)P作GP∥AB交CD于E 過點(diǎn)P作PF∥CD
∵ PE∥AB
∴∠BMD=∠GED=∠GPF=50° ∠B=∠BPG(兩直線平行,內(nèi)錯(cuò)角相等)
∵ PF∥CD ∴∠D=∠DPF(兩直線平行,內(nèi)錯(cuò)角相等) ∴∠B+∠D=∠BPG+∠DPF(等量代換)
即∠B+∠D =∠BPD-∠GPF=∠BPD-∠BMD=90°- 40°=50°
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為貫徹政府報(bào)告中“大眾創(chuàng)業(yè)、萬眾創(chuàng)新”的精神,某鎮(zhèn)對轄區(qū)內(nèi)所有的小微企業(yè)按年利潤w(萬元)的多少分為以下四個(gè)類型:A類(w<10),B類(10≤w<20),C類(20≤w<30),D類(w≥30),該鎮(zhèn)政府對轄區(qū)內(nèi)所有小微企業(yè)的相關(guān)信息進(jìn)行統(tǒng)計(jì)后,繪制成以下條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請你結(jié)合圖中信息解答下列問題:
(1)該鎮(zhèn)本次統(tǒng)計(jì)的小微企業(yè)總個(gè)數(shù)是 ,扇形統(tǒng)計(jì)圖中B類所對應(yīng)扇形圓心角的度數(shù)為 度,請補(bǔ)全條形統(tǒng)計(jì)圖;
(2)為了進(jìn)一步解決小微企業(yè)在發(fā)展中的問題,該鎮(zhèn)政府準(zhǔn)備召開一次座談會(huì),每個(gè)企業(yè)派一名代表參會(huì).計(jì)劃從D類企業(yè)的4個(gè)參會(huì)代表中隨機(jī)抽取2個(gè)發(fā)言,D類企業(yè)的4個(gè)參會(huì)代表中有2個(gè)來自高新區(qū),另2個(gè)來自開發(fā)區(qū).請用列表或畫樹狀圖的方法求出所抽取的2個(gè)發(fā)言代表都來自高新區(qū)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的三個(gè)頂點(diǎn)A,B,C的坐標(biāo)分別為A(4,0),B(0,-3),C(2,-4).
(1)在如圖的平面直角坐標(biāo)系中畫出△ABC關(guān)于x軸對稱的△A'B'C',并分別寫出A′,B′,C′的坐標(biāo);
(2)將△ABC向左平移5個(gè)單位,請畫出平移后的△A″B″C″,并寫出△A″B″C″各個(gè)頂點(diǎn)的坐標(biāo);
(3)求出(2)中的△ABC在平移過程中所掃過的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】通過類比聯(lián)想、引申拓展研究典型題目,可達(dá)到解一題知一類的目的.下面是一個(gè)案例,請補(bǔ)充完整.
原題:如圖1,點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF,則EF=BE+DF,試說明理由.
(1)思路梳理
∵AB=CD,
∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合.
∵∠ADC=∠B=90°,
∴∠FDG=180°,點(diǎn)F、D、G共線.
根據(jù)___________,SAS
易證△AFG≌___________△AEF
,得EF=BE+DF.
(2)類比引申
如圖2,四邊形ABCD中,AB=AD,∠BAD=90°.點(diǎn)E、F分別在邊BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,則當(dāng)∠B與∠D滿足等量關(guān)系______________∠B+∠D=180°
時(shí),仍有EF=BE+DF.
(3)聯(lián)想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D、E均在邊BC上,且∠DAE=45°.猜想BD、DE、EC應(yīng)滿足的等量關(guān)系,并寫出推理過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近年來,由于受國際石油市場的影響,汽油價(jià)格不斷上漲.下面是小明與爸爸的對話:
小明:“爸爸,聽說今年5月份的汽油價(jià)格上漲了不少啊!”
爸爸:“是啊,今年5月份每升汽油的價(jià)格是去年5月份每升汽油的價(jià)格的倍,用150元給汽車加的油量比去年少11.25升.”
小明:“今年5月份每升汽油的價(jià)格是多少呢?”
聰明的你,根據(jù)上面的對話幫小明計(jì)算一下今年5月份每升汽油的價(jià)格?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】永州市是一個(gè)降水豐富的地區(qū),今年4月初,某地連續(xù)降雨導(dǎo)致該地某水庫水位持續(xù)上漲,下表是該水庫4月1日~4月4日的水位變化情況:
日期x | 1 | 2 | 3 | 4 |
水位y(米) | 20.00 | 20.50 | 21.00 | 21.50 |
(1)請建立該水庫水位y與日期x之間的函數(shù)模型;
(2)請用求出的函數(shù)表達(dá)式預(yù)測該水庫今年4月6日的水位;
(3)你能用求出的函數(shù)表達(dá)式預(yù)測該水庫今年12月1日的水位嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知BC∥OA,∠B=∠A=100°,試回答下列問題:
(1)如圖①所示,試說明OB∥AC;
(2)如圖②,若點(diǎn)E,F在BC上,且滿足∠FOC=∠AOC,并且OE平分∠BOF.則∠EOC的度數(shù)等于________(在橫線上填上答案即可);
(3)在(2)的條件下,若平行移動(dòng)AC,如圖③,那么∠OCB∶∠OFB的值是否隨之發(fā)生變化?若變化,試說明理由;若不變,求出這個(gè)比值;
(4)在(3)的條件下,在平行移動(dòng)AC的過程中,若使∠OEB=∠OCA,此時(shí)∠OCA的度數(shù)等于________(在橫線上填上答案即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)便民超市為了了解顧客的消費(fèi)情況,在該小區(qū)居民中進(jìn)行調(diào)查,詢問每戶人家每周到超市的次數(shù),下圖是根據(jù)調(diào)查結(jié)果繪制的,請問:
(1)這種統(tǒng)計(jì)圖通常被稱為什么統(tǒng)計(jì)圖?(2)此次調(diào)查共詢問了多少戶人家?
(3)超過半數(shù)的居民每周去多少次超市?(4)請將這幅圖改為扇形統(tǒng)計(jì)圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在寬20米,長32米的矩形耕地上,修筑同樣寬的三條路(兩條縱向,一條橫向,并且橫向與縱向互相垂直),把這塊耕地分成大小相等的六塊試驗(yàn)田,要使試驗(yàn)田的面積是570平方米,問道路應(yīng)該多寬?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com