如圖,用四個螺絲將四條不可彎曲的木條圍成一個木框,不計螺絲大小,其中相鄰兩螺絲的距離依序為2、3、4、6,且相鄰兩木條的夾角均可調整,若調整木條的夾角時不破壞此木框,則任兩螺絲的距離的最大值是  (      )
A.5B.7 C.8 D.10
B

試題分析:若兩個螺絲的距離最大,則此時這個木框的形狀為三角形,可根據(jù)三條木棍的長來判斷有幾種三角形的組合,然后分別找出這些三角形的最長邊即可.
已知4條木棍的四邊長為2、3、4、6;
①選2+3、4、6作為三角形,則三邊長為5、4、6;6-5<4<6+5,能構成三角形,此時兩個螺絲間的最長距離為6;
②選3+4、6、2作為三角形,則三邊長為2、7、6;6-2<7<6+2,能構成三角形,此時兩個螺絲間的最大距離為7;
③選4+6、2、3作為三角形,則三邊長為10、2、3;2+3<10,不能構成三角形,此種情況不成立;
綜上所述,任兩螺絲的距離之最大值為7.
故選B.
點評:此題實際考查的是三角形的三邊關系定理,能夠正確的判斷出調整角度后三角形木框的組合方法是解答的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

下面幾條線段能構成三角形的是  (   ).
A.3,1,5B.5,12,14  C.7,2,4  D.1,2,3

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

【問題提出】
規(guī)定:四條邊對應相等,四個角對應相等的兩個四邊形全等.
我們借助學習“三角形全等的判定”獲得的經(jīng)驗與方法對“全等四邊形的判定”進行探究.
【初步思考】
在兩個四邊形中,我們把“一條邊對應相等”或“一個角對應相等”稱為一個條件,滿足4個條件的兩個四邊形不一定全等,如邊長相等的正方形與菱形就不一定全等.類似地,我們容易知道兩個四邊形全等至少需要5個條件.
【深入探究】
小莉所在學習小組進行了研究,她們認為5個條件可分為以下四種類型:
Ⅰ一條邊和四個角對應相等;
Ⅱ二條邊和三個角對應相等;
Ⅲ三條邊和二個角對應相等;
Ⅳ四條邊和一個角對應相等.
(1)小明認為“Ⅰ一條邊和四個角對應相等”的兩個四邊形不一定全等,請你舉例說明.
(2)小紅認為“Ⅳ四條邊和一個角對應相等”的兩個四邊形全等,請你結合下圖進行證明.
已知:如圖,          
求證:                     
證明:

(3)小剛認為還可以對“Ⅱ二條邊和三個角對應相等”進一步分類,他以四邊形和四邊形為例,分為以下四類:
,,
,,,,
,,,,;
,,;
其中能判定四邊形和四邊形全等的是     (填序號),概括可得“全等四邊形的判定方法”,這個判定方法是         
(4)小亮經(jīng)過思考認為也可以對“Ⅲ三條邊和二個角對應相等”進一步分類,請你仿照小剛的方法先進行分類,再概括得出一個全等四邊形的判定方法.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,由下列條件不能判定△ABC與△ADE相似的是(    )
A.B.∠B=∠ADEC.D.∠C=∠AED

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,△ABC是邊長為3cm的等邊三角形,動點P、Q同時從A、B兩點出發(fā),分別沿AB、BC方向勻速移動,它們的速度都是1cm/s,當點P到達點B時,P、Q兩點停止運動,設點P的運動時間t(s),解答下列各問題:

(1)求的面積;
(2)當t為何值是,△PBQ是直角三角形?
(3)設四邊形APQC的面積為y(),求y與t的關系式;是否存在某一時刻t,使四邊形APQC的面積是面積的三分之二?如果存在,求出t的值;不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

等腰三角形一底角為50°,則頂角的度數(shù)是
A.65°B.70°C.80°D.40°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

一、閱讀理解:
在△ABC中,BC=a,CA=b,AB=c;
(1)若∠C為直角,則;
(2)若∠C為為銳角,則的關系為:
(3)若∠C為鈍角,試推導的關系.
二、探究問題:在△ABC中,BC=a=3,CA=b=4,AB=c;若△ABC是鈍角三角形,求第三邊c的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖所示,BC=1,數(shù)軸上點A所表示的數(shù)為a,則a值為(   )
A.+1B.-+1C.-1D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知一個多邊形的每一個內角都是,則這個多邊形的邊數(shù)為      .

查看答案和解析>>

同步練習冊答案