【題目】已知菱形的一個(gè)角與三角形的一個(gè)角重合,然后它的對(duì)角頂點(diǎn)在這個(gè)重合角的對(duì)邊上,這個(gè)菱形稱為這個(gè)三角形的親密菱形,如圖,在△CFE中,CF=6,CE=12,FCE=45°,以點(diǎn)C為圓心,以任意長(zhǎng)為半徑作AD,再分別以點(diǎn)A和點(diǎn)D為圓心,大于AD長(zhǎng)為半徑做弧,交EF于點(diǎn)B,ABCD.

(1)求證:四邊形ACDB為△CFE的親密菱形;

(2)求四邊形ACDB的面積.

【答案】(1)證明見解析;(2)四邊形ACDB的面積為8.

【解析】

(1)依題可得:AC=CD,AB=DB,BC是∠FCE的角平分線,根據(jù)角平分線的定義和平行線的性質(zhì)得∠ACB=ABC,根據(jù)等角對(duì)等邊得AC=AB,從而得AC=CD=DB=BA,根據(jù)四邊相等得四邊形是菱形即可得四邊形ACDB是菱形;再根據(jù)題中的新定義即可得證.
(2)設(shè)菱形ACDB的邊長(zhǎng)為x,根據(jù)已知可得CF=6,CE=12,FA=6-x,根據(jù)相似三角形的判定和性質(zhì)可得 ,解得:x=4,過點(diǎn)AAHCD于點(diǎn)H,RtACH中,根據(jù)銳角三角形函數(shù)正弦的定義即可求得AH ,再由四邊形的面積公式即可得答案.

(1)由已知得:AC=CD,AB=DB,由已知尺規(guī)作圖痕跡得:BC是∠FCE的角平分線,

∴∠ACB=DCB,

又∵ABCD,

∴∠ABC=DCB,

∴∠ACB=ABC,

AC=AB,

又∵AC=CD,AB=DB,

AC=CD=DB=BA,

四邊形ACDB是菱形,

又∵∠ACD與△FCE中的∠FCE重合,它的對(duì)角∠ABD頂點(diǎn)在EF,

∴四邊形ACDB為△FEC的親密菱形.

(2)設(shè)菱形ACDB的邊長(zhǎng)為x,CF=6,CE=12,

FA=6-x,

又∵ABCE,

∴△FAB∽△FCE,

,

解得:x=4,

過點(diǎn)AAHCD于點(diǎn)H,

RtACHACH=45°,

sinACH= ,

AH=4× =2

∴四邊形ACDB的面積為: .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC=2,∠BAC=120°,點(diǎn)DE都在邊BC上,∠DAE=60°.若BD=2CE,則DE的長(zhǎng)為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高中學(xué)校為使高一新生入校后及時(shí)穿上合身的校服,現(xiàn)提前對(duì)某校九年級(jí)三班學(xué)生即將所穿校服型號(hào)情況進(jìn)行了摸底調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下兩個(gè)不完整的統(tǒng)計(jì)圖(校服型號(hào)以身高作為標(biāo)準(zhǔn),共分為6種型號(hào))

根據(jù)以上信息,解答下列問題:

(1)該班共有   名學(xué)生.

(2)在條形統(tǒng)計(jì)圖中,請(qǐng)把空缺的部分補(bǔ)充完整;

(3)在扇形統(tǒng)計(jì)圖中,185型校服所對(duì)應(yīng)扇形圓心角=   

(4)若全校九年級(jí)共有學(xué)生800名,請(qǐng)估計(jì)穿170型校服的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在菱形ABCD中,對(duì)角線ACBD相交于點(diǎn)O,DE∥AC,AE∥BD

(1)、求證:四邊形AODE是矩形;(2)、若AB6,∠BCD120°,求四邊形AODE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的口袋里裝有僅顏色不同的黑、白兩種顏色的球20只,某學(xué)習(xí)小組做摸球?qū)嶒?yàn).將球攪勻后從中隨機(jī)摸出一個(gè)球,記下顏色,再把它放回袋中,不斷重復(fù),下表是活動(dòng)進(jìn)行中記下的一組數(shù)據(jù)

摸球的次數(shù)

100

150

200

500

800

1000

摸到白球的次數(shù)

58

96

116

295

484

601

摸到白球的頻率

0.58

0.64

0.58

0.59

0.605

0.601

(1)請(qǐng)你估計(jì),當(dāng)n很大時(shí),摸到白球的頻率將會(huì)接近 (精確到0.1).

(2)假如你去摸一次,你摸到白球的概率是 ,摸到黑球的概率是

(3)試估算口袋中黑、白兩種顏色的球有多少只.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線AB, AB 之間的距離為 2 C、D 是直線兩個(gè)動(dòng)點(diǎn)(點(diǎn) C D 點(diǎn)的左側(cè)),且 AB=CD=5.連接 AC、BC、BD,將ABC 沿 BC 折疊得到A′BC.若以 A′、C、B、D 為頂點(diǎn)的四邊形為矩形,則此矩形相鄰兩邊之和為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平行四邊形ABCD中添加下列條件,不能判定四邊形ABCD是矩形的是(

A. 90°B. ACBDC. AC=BDD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)解方程:2x2﹣7x+6=0;

(2)已知關(guān)于x的方程x2+kx﹣2=0.

求證方程有兩個(gè)不相等的實(shí)數(shù)根;

若方程的一個(gè)根是﹣1,求另一個(gè)根及k

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(l)操作:如圖1,點(diǎn)O為線段MN的中點(diǎn),直線PQ與MN相交于點(diǎn)O,請(qǐng)利用圖1畫出一對(duì)以點(diǎn)O為對(duì)稱中心的全等三角形;根據(jù)上述操作得到的經(jīng)驗(yàn)完成下列探究活動(dòng):

(2)探究一:如圖2,在四邊形ABCD中,AB∥DC,E為BC邊的中點(diǎn),∠BAE=∠EAF,AF與DC的延長(zhǎng)線相交于點(diǎn)F.試探究線段AB與AF,AF,CF之間的等量關(guān)系,并證明你的結(jié)論;

(3)探究二:如圖3 ,DE,BC相交于點(diǎn)E,BA交DE于點(diǎn)A,且BE:EC=1:2,∠BAE=∠EDF,CF∥AB.若AB=5,CF=1,求DF的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案