【題目】已知正比例函數y=k1x的圖象與反比例函數y= 的圖象的一個交點是(2,3).
(1)求出這兩個函數的表達式;
(2)作出兩個函數的草圖,利用你所作的圖形,猜想并驗證這兩個函數圖象的另一個交點的坐標;
(3)直接寫出使反比例函數值大于正比例函數值的x的取值范圍.
【答案】
(1)解:由正比例函數y=k1x的圖象與反比例函數y= 的圖象的一個交點是(2,3),得
3=2k1,3= .
解得k1= ,k2=6.
正比例函數y= x;反比例函數y= ;
(2)解:畫出函數的圖象如圖:
兩個函數圖象的一個交點的坐標(2,3),猜想另一個交點的坐標(﹣2,﹣3),
把(﹣2,﹣3)代入y= 成立;
(3)解:由圖象可知:比例函數值大于正比例函數值的x的取值范圍是x<﹣2或0<x<2.
【解析】(1)由已知兩個函數交點是(2,3),由待定系數法易得兩個函數解析式為正比例函數y= x;反比例函數y=;
(2)做草圖時注意可以找?guī)讉關鍵點,盡量做得準確,由于正比例函數和反比例函數均為中心對稱圖形,所以易得另一個交點為(﹣2,﹣3)代入解析式驗證即可。
(3)首先確定交點位置,根據交點把x軸分成四段,再根據上邊圖像的函數值大于下邊圖像的函數值,容易確定比例函數值大于正比例函數值的x的取值范圍是x<﹣2或0<x<2
【考點精析】本題主要考查了反比例函數的圖象的相關知識點,需要掌握反比例函數的圖像屬于雙曲線.反比例函數的圖象既是軸對稱圖形又是中心對稱圖形.有兩條對稱軸:直線y=x和 y=-x.對稱中心是:原點才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】甲、乙兩同學用一副撲克牌中牌面數字分別是:3,4,5,6的4張牌做抽數學游戲.游戲規(guī)則是:將這4張牌的正面全部朝下,洗勻,從中隨機抽取一張,抽得的數作為十位上的數字,然后,將所抽的牌放回,正面全部朝下、洗勻,再從中隨機抽取一張,抽得的數作為個位上的數字,這樣就得到一個兩位數.若這個兩位數小于45,則甲獲勝,否則乙獲勝.你認為這個游戲公平嗎?請運用概率知識說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,如圖為邊長為a的大正方形中有一個邊長為b的小正方形,如圖是由如圖中陰影部分拼成的一個長方形.
(1)設如圖中陰影部分面積為S1,如圖中陰影部分面積為S2,請用含a、b的代數式表示: ____ __, ___ ___(只需表示,不必化簡);
(2)以上結果可以驗證哪個乘法公式?
請寫出這個乘法公式__ ____;
(3)利用(2)中得到的公式,
計算:.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】兩枚正四面體骰子的各面上分別標有數字1,2,3,4,現在同時投擲這兩枚骰子,并分別記錄著地的面所得的點數為a、b.
(1)假設兩枚正四面體都是質地均勻,各面著地的可能性相同,請你在下面表格內列舉出所有情形(例如(1,2),表示a=1,b=2),并求出兩次著地的面點數相同的概率.
b | 1 | 2 | 3 | 4 |
1 | (1,2) | |||
2 | ||||
3 | ||||
4 |
(2)為了驗證試驗用的正四面體質地是否均勻,小明和他的同學取一枚正四面體進行投擲試驗.試驗中標號為1的面著地的數據如下:
試驗總次數 | 50 | 100 | 150 | 200 | 250 | 600 |
“標號1”的面著地的次數 | 15 | 26 | 34 | 48 | 63 | 125 |
“標號1”的面著地的頻率 | 0.3 | 0.26 | 0.23 | 0.24 |
請完成表格(數字精確到0.01),并根據表格中的數據估計“標號1的面著地”的概率是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了更好地開展球類運動,體育組決定用1600元購進足球8個和籃球14個,并且籃球的單價比足球的單價多20元,請解答下列問題:
(1)求出足球和籃球的單價;
(2)若學校欲用不超過3240元,且不少于3200元再次購進兩種球50個,求出有哪幾種購買方案?
(3)在(2)的條件下,若已知足球的進價為50元,籃球的進價為65元,則在第二次購買方案中,哪種方案商家獲利最多?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】填寫推理的依據。
(1)已知:AB∥CD,AD∥BC。求證:∠B=∠D。
證明:∵AB∥CD,AD∥BC( 已知 )
∴∠A+∠B=180,∠A+∠D=180°(_______________________________)
∴∠B=∠D (___________________________)
(2)已知:DF∥AC,∠A=∠F。求證:AE∥BF。
證明:∵DF∥AC (已知)
∴∠FBC=∠_______(_______________________________)
∵∠A=∠F(已知)
∴∠A=∠FBC (____________________)
∴AE∥FB (_____________________________)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=5,AB=8,點E為射線DC上一個動點,把△ADE沿直線AE折疊,當點D的對應點F剛好落在線段AB的垂直平分線上時,則DE的長為 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com