【題目】對(duì)于平面直角坐標(biāo)系O中的點(diǎn)P和⊙C,給出如下定義:若⊙C上存在兩個(gè)點(diǎn)M,N,使得∠MPN=60°,則稱(chēng)P為⊙C 的關(guān)聯(lián)點(diǎn)。已知點(diǎn)D(,),E(0,-2),F(xiàn)(,0)
(1)當(dāng)⊙O的半徑為1時(shí),
①在點(diǎn)O,D,E,F(xiàn)中,⊙O的關(guān)聯(lián)點(diǎn)是______ ____;
②如果G(0,t)是⊙O的關(guān)聯(lián)點(diǎn),則t的取值范圍是 ;
(2)如果線(xiàn)段EF上每一個(gè)點(diǎn)都是⊙O的關(guān)聯(lián)點(diǎn),那么⊙O的半徑最小為 ;
(3)Rt⊿ABC中,∠C=90,BC=8,∠A=30,⊙P的半徑為1,當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),始終確保⊿ABC的三條邊中至少有一條邊上恰好有唯一的⊙P的關(guān)聯(lián)點(diǎn)。請(qǐng)你畫(huà)出點(diǎn)P所走過(guò)的路線(xiàn)圍成的圖形的示意圖,并在下面橫線(xiàn)上直接寫(xiě)出它的總長(zhǎng)。
答:點(diǎn)P經(jīng)過(guò)的路線(xiàn)圍成的圖形的總長(zhǎng)為 。
【答案】(1)①O、D、E;②-2≤t≤2;(2) ;(3) .
【解析】
(1)①根據(jù)關(guān)聯(lián)點(diǎn)的定義得出E點(diǎn)是 O的關(guān)聯(lián)點(diǎn),進(jìn)而得出F、D,與 O的關(guān)系;
②根據(jù)題意可知G(0,t)是⊙O的關(guān)聯(lián)點(diǎn),計(jì)算出t的取值范圍即可;
(2)若線(xiàn)段EF上的所有點(diǎn)都是某個(gè)圓的關(guān)聯(lián)點(diǎn),欲使這個(gè)圓的半徑最小,則這個(gè)圓的圓心應(yīng)在線(xiàn)段EF的中點(diǎn);再考慮臨界情況,即恰好E、F點(diǎn)為 K的關(guān)聯(lián)時(shí),則KF=2KN=EF=2,即可得出圓的半徑r的取值范圍,即可得出結(jié)論.
(3)根據(jù)題意與周長(zhǎng)公式列出等式即可得出結(jié)論.
(1)① O、D、E
② -2≦t≦2
根據(jù)關(guān)聯(lián)點(diǎn)的定義得出E點(diǎn)是 O的關(guān)聯(lián)點(diǎn),根據(jù)題意可知G(0,t)是⊙O的關(guān)聯(lián)點(diǎn),所以t的范圍是-2≦t≦2.
(2)若線(xiàn)段EF上的所有點(diǎn)都是某個(gè)圓的關(guān)聯(lián)點(diǎn),欲使這個(gè)圓的半徑最小,則這個(gè)圓的圓心應(yīng)在線(xiàn)段EF的中點(diǎn);再考慮臨界情況,即恰好E、F點(diǎn)為 K的關(guān)聯(lián)時(shí),則KF=2KN=EF=2,即可得出圓的半徑r的取值范圍,.
(3)點(diǎn)P經(jīng)過(guò)的路線(xiàn)圍成的圖形的總長(zhǎng)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程x2+(m﹣3)x﹣m(2m﹣3)=0
(1)證明:無(wú)論m為何值方程都有兩個(gè)實(shí)數(shù)根;
(2)是否存在正數(shù)m,使方程的兩個(gè)實(shí)數(shù)根的平方和等于26?若存在,求出滿(mǎn)足條件的正數(shù)m的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角三角形ABC中,∠ACB=90°,D、E是邊AB上兩點(diǎn),且CE所在直線(xiàn)垂直平分線(xiàn)段AD,CD平分∠BCE,BC=2,則AB=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=﹣x2+bx+c與x軸交于A(﹣1,0),B(5,0)兩點(diǎn),直線(xiàn)y=﹣x+3與y軸交于點(diǎn)C,與x軸交于點(diǎn)D.點(diǎn)P是直線(xiàn)CD上方的拋物線(xiàn)上一動(dòng)點(diǎn),過(guò)點(diǎn)P作PF⊥x軸于點(diǎn)F,交直線(xiàn)CD于點(diǎn)E,設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)求拋物線(xiàn)的解析式;
(2)求PE的長(zhǎng)最大時(shí)m的值.
(3)Q是平面直角坐標(biāo)系內(nèi)一點(diǎn),在(2)的情況下,以PQCD為頂點(diǎn)的四邊形是平行四邊形是否存在?若存在,直接寫(xiě)出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知方程ax2+bx+c=0(a≠0)是關(guān)于x的一元二次方程.
(1)直接寫(xiě)出方程根的判別式;
(2)寫(xiě)出求根公式的推導(dǎo)過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn) E 是△ABC 的內(nèi)心,AE 的延長(zhǎng)線(xiàn)和△ABC 的外接圓相交于點(diǎn) D,連 接 BE
(1) 若∠CBD=35°,求∠BAC 及∠BEC 的度數(shù)
(2) 求證:DE=DB
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:矩形ABCD中AB=2,BC= ,⊙A是以A為圓心,半徑r=1的圓,若⊙A繞著點(diǎn)B順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為α( 0°<α<180°);當(dāng)旋轉(zhuǎn)后的圓與矩形ABCD的邊相切時(shí),α=________度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四邊形中,,,含角()的直角三角板(如圖)在圖中平移,直角邊,頂點(diǎn)、分別在邊、上,延長(zhǎng)到點(diǎn),使,若,,則點(diǎn)從點(diǎn)平移到點(diǎn)的過(guò)程中,點(diǎn)的運(yùn)動(dòng)路徑長(zhǎng)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一座人行天橋的示意圖,天橋的高度是10米,CB⊥DB,坡面AC的傾斜角為45°.為了方便行人推車(chē)過(guò)天橋,市政部門(mén)決定降低坡度,使新坡面DC的坡度為i=:3.若新坡角下需留3米寬的人行道,問(wèn)離原坡角(A點(diǎn)處)10米的建筑物是否需要拆除?(參考數(shù)據(jù): ≈1.414, ≈1.732)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com