【題目】如圖,在△ABC中,AC=4,BC=2,點D是邊AB上一點,CD將△ABC分成△ACD和△BCD,若△ACD是以AC為底的等腰三角形,且△BCD與△BAC相似,則CD的長為( )

A.
B.2
C.4 ﹣4
D.

【答案】D
【解析】∵△ACD是以AC為底的等腰三角形,

∴AD=CD,

∵△BCD與△BAC相似,

= ,

設CD=x,BD=y,

= = ,

解得:x=2y,

∴y= ,

∴x= ,

∴CD=

所以答案是:D.

【考點精析】本題主要考查了等腰三角形的性質和相似三角形的性質的相關知識點,需要掌握等腰三角形的兩個底角相等(簡稱:等邊對等角);對應角相等,對應邊成比例的兩個三角形叫做相似三角形才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y= (x>0)的圖象交于A(m,6),B(3,n)兩點

(1)求一次函數(shù)的解析式;
(2)根據圖象直接寫出使kx+b< 成立的x的取值范圍;
(3)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知是等邊三角形,點D是直線BC上一點,以AD為一邊在AD的右側作等邊

如圖,點D在線段BC上移動時,直接寫出的大小關系;

如圖,點D在線段BC的延長線上或反向延長線上移動時,猜想的大小是否發(fā)生變化,若不變請直接寫出結論并選擇其中一種圖示進行證明;若變化,請分別寫出圖、圖所對應的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32.連接BD,AE⊥BD垂足為E.

(1)求證:△ABE∽△DBC;
(2)求線段AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

112016 + 3.14 π 0

2 3a2 3 2a a5

3 x 2 x 1 3xx 1

42a b c2a b c

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在讀數(shù)月活動中學校準備購買一批課外讀物,為使課外讀物滿足同學們的需求,學校就“我最喜愛的課外讀物”從文學、藝術、科普和其他四個類別進行了抽樣調查(每位同學只選一類)。下圖是根據調查結果繪制的兩幅不完整的統(tǒng)計圖。

請你根據統(tǒng)計圖提供的信息,解答下列問題:

1)本次調查中,一共調查了 名同學;

2)條形統(tǒng)計圖中;

3)扇形統(tǒng)計圖中,藝術類讀數(shù)所在扇形的圓心角是 度;

4)學校計劃購買課外讀物8000冊,請根據樣本數(shù)據,估計學校購買其他類讀數(shù)多少冊?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合題
(1)【問題提出】如圖1.△ABC是等邊三角形,點D在線段AB上.點E在直線BC上.且∠DEC=∠DCE.求證:BE=AD;

(2)【類比學習】如圖2.將條件“點D在線段AB上”改為“點D在線段AB的延長線上”,其他條件不變.判斷線段AB,BE,BD之間的數(shù)量關系,并說明理由.

(3)【擴展探究】如圖3.△ABC是等腰三角形,AB=AC,∠BAC=120°,點D在線段AB的反向延長線上,點E在直線BC上,且∠DEC=∠DCE,【類比學習】中的線段AB、BE、BD之間的數(shù)量關系是否還成立?若成立,請說明理由;若不成立,請直接寫出線段AB,BE,BD之間的數(shù)量.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】看圖填空:已知如圖,AD⊥BCD,EG⊥BCG,∠E=∠1,

求證:AD平分∠BAC.

證明:∵AD⊥BCD,EG⊥BCG( 已知

∴∠ADC=90°,∠EGC=90°___________

∴∠ADC=∠EGC(等量代換

∴AD∥EG_____________

∴∠1=∠2___________

∠E=∠3___________

∵∠E=∠1( 已知

∴∠2=∠3___________

∴AD平分∠BAC___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義一種新運算“ab”的含義為:當a≥b時,ab=a+b;當ab時,ab=a-b.例如:3☆(-4=3+-4=-1,(-6)☆=-6-=-6

1)填空:(-4)☆3=______

2)如果(3x-4)☆(2x+8=3x-4-2x+8),求x的取值范圍;

3)如果(3x-7)☆(3-2x=2,求x的值.

查看答案和解析>>

同步練習冊答案