【題目】某校八年級學(xué)生小麗、小強和小紅到某超市參加了社會實踐活動,在活動中他們參與了某種水果的銷售工作,已知該水果的進(jìn)價為8元/千克,下面是他們在活動結(jié)束后的對話.
小麗:如果以10元/千克的價格銷售,那么每天可售出300千克.
小強:如果以13元/千克的價格銷售,那么每天可售出240千克.
小紅:通過調(diào)查驗證,我發(fā)現(xiàn)每天的銷售量y(千克)與銷售單價x(元)之間存在一次函數(shù)關(guān)系,每天銷售200千克以上.
(1)求每天的銷售量y(千克)與銷售單價x(元)之間的函數(shù)關(guān)系式;
(2)該超市銷售這種水果每天獲取的利潤達(dá)到1040元,那么銷售單價為多少元?
【答案】(1)y=﹣20x+500;(2)該超市銷售這種水果每天獲取的利潤達(dá)到1040元,那么銷售單價為12元.
【解析】試題分析:(1)用待定系數(shù)法求得一次函數(shù)的解析式;(2)列出方程即可解決問題.
試題解析:
(1)設(shè)y=kx+b,
∵x=10,y=300;x=13,y=240,
∴ ,
解得,
∴y=﹣20x+500;
(2)(x﹣8)(﹣20x+500)=1040,
整理,得x2﹣33x+252=0,
解得x1=12,x2=21.
當(dāng)x=12時,銷售量為﹣20×12+500=260>200,符合題意;
當(dāng)x=21時,銷售量為﹣20×21+500=80<200,不符合題意,舍去,
所以x=12.
即該超市銷售這種水果每天獲取的利潤達(dá)到1040元,那么銷售單價為12元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,,分別在軸正半軸和軸負(fù)半軸上,在第二象限,滿足:,.已知.
(1)求,的坐標(biāo);
(2)求點的坐標(biāo)及的面積;
(3)已知是軸的正半軸上一點,,在第一象限,,,連接交軸于點.
①求證:.
②在點的移動過程中,給出以下兩個結(jié)論:(i)的值不變;(ii)的值不變,其中有且只有一個是正確的,請你找出這個結(jié)論并求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A(n,-2),B(1,4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個交點,直線AB與y軸交于點C.
(1)求反比例函數(shù)和一次函數(shù)的關(guān)系式;
(2)求△AOC的面積;
(3)求不等式kx+b-<0的解集(直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點A(4,0)、B(-6,0),點C是y軸上的一個動點,當(dāng)∠BCA=45°時,點C的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=CB,∠BAC=∠BCA,∠ABC=90°,F為AB延長線上一點,點E在BC上,且AE=CF.
(1)求證:Rt△ABE≌ Rt△CBF;
(2)求證:AE⊥CF;
(3)若∠CAE=30°,求∠ACF度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,∠C=60°,點D,E分別是邊AC,BC上的點,點P是直線AB上一動點,連接PD,PE,設(shè)∠DPE=α.
(1)如圖①所示,如果點P在線段BA上,且α=30°,那么∠PEB+∠PDA=___;
(2)如圖②所示,如果點P在線段BA上運動,
①依據(jù)題意補全圖形;
②寫出∠PEB+∠PDA的大小(用含α的式子表示);并說明理由。
(3)如果點P在線段BA的延長線上運動,直接寫出∠PEB與∠PDA之間的數(shù)量關(guān)系(用含α的式子表示).那么∠PEB與∠PDA之間的數(shù)量關(guān)系是___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場在春節(jié)期間搞優(yōu)惠促銷活動,商場將29英寸和25英寸彩電共96臺分別以8折和7折出售,共得168400元。已知29英寸彩電原價為3000元/臺,25英寸彩電原價為2000元/臺,出售29英寸和25英寸彩電各多少臺?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】Rt△ABC中,∠BAC=90°,AB=3,AC=4,P為邊BC上一動點,PE⊥AB于E,PF⊥AC于F,M為EF中點,則AM的最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是∠BAC的平分線,AD的垂線平分線交AB于點F,交BC的延長線于點E,連接AE,DF.
求證:(1)∠EAD=∠EDA;(2)DF//AC;(3)∠EAC=∠B.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com