【題目】如圖,拋物線的對稱軸為直線x=2,且拋物線經(jīng)過A(1,0),C(0,5)兩點,與x軸交于點B.
(1)若直線y=mx+n經(jīng)過B. C兩點,求直線BC和拋物線的解析式;
(2)設(shè)點P為拋物線上的一個動點,連接PB、PC,若△BPC是以BC為直角邊的直角三角形,求此時點P的坐標;
(3)在拋物線上BC段有另一個動點Q,以點Q為圓心作Q,使得Q與直線BC相切,在運動的過程中是否存在一個最大Q?若存在,請直接寫出最大Q的半徑;若不存在,請說明理由.
【答案】(1) (2) P的坐標為(3,8)或(-2,7); (3)
【解析】
(1)根據(jù)對稱軸及A點坐標得出B點坐標,從而得出直線BC解析式,再由A、B、C三點坐標得出拋物線解析式;
(2)分別過B、C兩點作BC的垂線,得出垂線的解析式,與拋物線解析式聯(lián)立解出P點;
(3)平移BC到與拋物線剛好相切之處,此時的切點即為Q點,此時Q點距BC的距離最大,也就是半徑最大.運用等面積法進行處理.設(shè)切線與y軸的交點為H,則△HBC與△QBC的面積相等,算出面積,再以BC為底,算出BC邊上的高即為答案.
(1)∵對稱軸為x=2,且拋物線經(jīng)過A(1,0),
∴B(5,0).
把B(5,0),C(0,5)分別代入y=mx+n得,解得:,
∴直線BC的解析式為y=x5.
設(shè)y=a(x5)(x+1),把點C的坐標代入得:5a=5,解得:a=1,
∴拋物線的解析式為:.
(2)①過點C作,交拋物線于點,如圖,
則直線的解析式為y=x5,
由,解得: (舍去), ,
∴ (3,8);
②過點B作,交拋物線于,如圖,
則的解析式為y=x+5,
由,解得: (舍去), ,
∴ (-2,7);
∴P的坐標為(3,8)或(-2,7);
(3)由題意可知,Q點距離BC最遠時,半徑最大.平移直線BC,使其與拋物線只有一個公共點Q(即相切),設(shè)平移后的直線解析式為y=x+t,
由,消去y整理得,
△=,解得,
∴平移后與拋物線相切時的直線解析式為,且Q,
連接QC、QB,作QE⊥BC于E,如圖,
設(shè)直線與y軸的交點為H,連接HB,
則S△HBC=BOCH,
∵CH=5()=,
∴S△HBC=×5×=,
∴S△QBC=S△HBC=,
∵S△QBC=BCQE, BC=,
∴QE=,
即最大半徑為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4cm,BC=3cm,點P從點A出發(fā),沿A→B→C向終點C勻速運動,在邊AB,BC上分別以4cm/s,3cm/s的速度運動,同時點Q從點A出發(fā),沿A→D→C向終點C勻速運動,在邊AD,DC上分別以3cm/s,4cm/s的速度運動,連接PQ,設(shè)點P的運動時間為t(s),四邊形PBDQ的面積為S(cm2).
(1)當點P到達邊AB的中點時,求PQ的長;
(2)求S與t之間的函數(shù)解析式,并寫出自變量t的取值范圍;
(3)連接DP,當直線DP將矩形ABCD分成面積比為1:5兩部分時,直接寫出t的值,并寫出此時S的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠A=∠B=30°,P為AB中點,線段MV繞點P旋轉(zhuǎn),且M為射線AC上(不與點d重合)的任意一點,且N為射線BD上(不與點B重合)的一點,設(shè)∠BPN=α.
(1)求證:△APM≌△BPN;
(2)當MN=2BN時,求α的度數(shù);
(3)若AB=4,60°≤α≤90°,直接寫出△BPN的外心運動路線的長度。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,AB=6cm,BC=12cm,點P從點A出發(fā),沿AB邊向點B以每秒1cm的速度移動,同時,點Q從點B出發(fā)沿BC邊向點C以每秒2cm的速度移動,如果P、Q兩點在分別到達B、C兩點后就停止移動,回答下列問題:
(1)當運動開始后1秒時,求△DPQ的面積;
(2)當運動開始后秒時,試判斷△DPQ的形狀;
(3)在運動過程中,存在這樣的時刻,使△DPQ以PD為底的等腰三角形,求出運動時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖(a)、圖(b)、圖(c)是三張形狀、大小完全相同的方格紙,方格紙中的每個小正方形的邊長均為1.請在下圖中分別畫出符合要求的圖形,所畫圖形各頂點必須在方格紙的格點上.
(1)在圖(a)中畫一個等腰三角形,使它的底邊長是4,且面積是16;
(2)在圖(b)中畫一個等腰直角三角形,使它的面積是10;
(3)在圖(c)中畫一個四邊形,使它既是軸對稱又是中心對稱圖形,且面積是29.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.
(1)以AB邊上一點O為圓心,過A、D兩點作⊙O(不寫作法,保留作圖痕跡),再判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)若(1)中的⊙O與AB邊的另一個交點為E,AB=6,BD=2,求線段BD、BE與劣弧DE所圍成的圖形面積.(結(jié)果保留根號和π)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題背景:如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于點D,則D為BC的中點,∠BAD=∠BAC=60°,于是 = =;
遷移應用:如圖2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三點在同一條直線上,連接BD.
①求證:△ADB≌△AEC;
②請直接寫出線段AD,BD,CD之間的等量關(guān)系式;
拓展延伸:如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內(nèi)作射線BM,作點C關(guān)于BM的對稱點E,連接AE并延長交BM于點F,連接CE,CF.
①證明△CEF是等邊三角形;
②若AE=5,CE=2,求BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCG(AB<BC)與矩形CDEF全等,點B,C,D在同一條直線上,∠APE的頂點P在線段BD上移動,使∠APE為直角的點P的個數(shù)是( )
A.0 B.1 C.2 D.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,線段AB=2,C是AB上一動點,以AC、BC為邊在AB同側(cè)作正△ACE、正△BCF,連EF,點P為EF的中點.當點C從A運動到B時,P點運動路徑長為____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com