【題目】已知:如圖1,在平面直角坐標(biāo)系中,點(diǎn)A,B,E分別是x軸和y軸上的任意點(diǎn). BD是∠ABE的平分線,BD的反向延長線與∠OAB的平分線交于點(diǎn)C.

探究: 1)求∠C的度數(shù).

發(fā)現(xiàn): 2)當(dāng)點(diǎn)A,點(diǎn)B分別在x軸和y軸的正半軸上移動(dòng)時(shí),∠C的大小是否發(fā)生變化?若不變,請直接寫出結(jié)論;若發(fā)生變化,請求出∠C的變化范圍.

應(yīng)用:(3)如圖2在五邊形ABCDE中,∠A+∠B+∠E310°CF平分∠DCB,CF的反向延長線與∠EDC外角的平分線相交于點(diǎn)P,求∠P的度數(shù).

【答案】1)∠C=45°;(2)不變.C=AOB =45°; (3) 25°.

【解析】

1)先確定∠ABE與∠OAB的關(guān)系,∠ABE=OAB+90°,再根據(jù)角平分線和三角形的外角求得∠ACB的度數(shù);

2)設(shè)∠DBC=x,∠BAC=y,再根據(jù)BC平分∠DBO,AC平分∠BAO可知∠CBO=DBC=x,∠OAC=BAC=y.再由∠DBOAOB的外角,∠DBCABC的外角可得出關(guān)于x、y,∠C的方程組,求出∠C的值即可;

3)延長ED,BC相交于點(diǎn)G,易求∠G的度數(shù),由三角形外角的性質(zhì)可得結(jié)論.

1)∵∠ABE=OAB+AOB,∠AOB =90°,

∴∠ABE=OAB+90°

BD是∠ABE的平分線,AC平分∠OAB

∴∠ABE=2ABD,∠OAB=2BAC

2ABD=2BAC+90°,

∴∠ABD=BAC+45°,

又∵∠ABD= BAC +C,

∴∠C=45°

2)不變.C=AOB =45°.

理由如下:

設(shè)∠DBA=x,∠BAC=y,

BD平分∠EBA,AC平分∠BAO

∴∠EBD=DBA=x,∠OAC=BAC=y

∵∠EBAAOB的外角,∠DBAABC的外角,

,

∴∠C=45°

(3) 延長ED,BC相交于點(diǎn)G.

在四邊形ABGE中,

∵∠G360°(A+∠B+∠E)50°,

∴∠P=∠FCD-∠CDP (DCB-∠CDG)

G×50°25°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸正半軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,對稱軸為直線x=2,且OA=OC,則下列結(jié)論:①abc>0;②9a+3b+c<0;③c>﹣1;④關(guān)于x的方程ax2+bx+c=0(a≠0)有一個(gè)根為 -,其中正確的結(jié)論個(gè)數(shù)有_____________________ (填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,都是等邊三角形,,點(diǎn)分別是的中點(diǎn),連結(jié),,當(dāng),,時(shí),的長度為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知,,,,且以為頂點(diǎn)的四邊形為菱形.

1)直接寫出點(diǎn)的坐標(biāo);

2)請用無刻度直尺作直線,使直線經(jīng)過點(diǎn)且平分菱形的面積,保留作圖痕跡(若無法打印答題卡,不便于規(guī)范作圖,請用幾何語言直接描述具體的作圖過程代替作圖);

3)已知點(diǎn)邊上一點(diǎn),若線段將菱形的面積分為兩部分,直接寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公園草坪的防護(hù)欄由100段形狀相同的拋物線形構(gòu)件組成,為了牢固起見,每段護(hù)欄需要間距0.4m加設(shè)一根不銹鋼的支柱,防護(hù)欄的最高點(diǎn)距底部0.5m(如圖),則這條防護(hù)欄需要不銹鋼支柱的總長度至少為( 。

A. 50m B. 100m C. 160m D. 200m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明租用共享單車從家出發(fā),勻速騎行到相距2400米的郵局辦事.小明出發(fā)的同時(shí),他的爸爸以每分鐘100米的速度從郵局沿同一條道路步行回家,小明在郵局停留了2分鐘后沿原路按原速返回.設(shè)他們出發(fā)后經(jīng)過t(分)時(shí),小明與家之間的距離為s1(米),小明爸爸與家之間的距離為s2(米),圖中折線OABD,線段EF分別表示s1,s2t之間的函數(shù)關(guān)系的圖象.

1)求s1t之間的函數(shù)表達(dá)式;

2)小明從家出發(fā),經(jīng)過_______分在返回途中追上爸爸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為傳承中華優(yōu)秀傳統(tǒng)文化,某校團(tuán)委組織了一次全校2800名學(xué)生參加的漢字聽寫大賽.為了解本次大賽的成績,校團(tuán)委隨機(jī)抽取了其中200名學(xué)生的成績(成績取整數(shù),總分100)作為樣本進(jìn)行統(tǒng)計(jì),制成如下不完整的統(tǒng)計(jì)圖表:

根據(jù)所給信息,解答下列問題:

1)在這個(gè)問題中,有以下說法:①2800名學(xué)生是總體;②200名學(xué)生的成績是總體的一個(gè)樣本;③每名學(xué)生是總體的一個(gè)個(gè)體;④樣本容量是200;⑤以上調(diào)查是全面調(diào)查.其中正確的說法是 (填序號(hào))

(2) 統(tǒng)計(jì)表中m= ,n= ;

(3) 補(bǔ)全頻數(shù)分布直方圖;

(4) 若成績在90分以上(包括90)為優(yōu)等,請你估計(jì)該校參加本次比賽的2800名學(xué)生中成績是優(yōu)等的約為多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCDADBC, B=60°,AB=AD=BO=4cm,OC=8cm, 點(diǎn)MB點(diǎn)出發(fā),按從B→A→D→C的方向,沿四邊形BADC的邊以1cm/s的速度作勻速運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)C即停止.若運(yùn)動(dòng)的時(shí)間為t,MOD的面積為y,y關(guān)于t的函數(shù)圖象大約是( )

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠B50°,∠C110°,∠D90°,AEBC,AF是∠BAD的平分線,與邊BC交于點(diǎn)F.求∠EAF的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案