【題目】如圖,四邊形ABCD中,E、F、G、H依次是各邊中點,O是四邊形ABCD內(nèi)一點, 若四邊形AEOH、四邊形BFOE、四邊形CGOF的面積分別為7、9、10,則四邊形DHOG的面積為( )
A. 7 B. 8 C. 9 D. 10
【答案】B
【解析】分析:連接OC,OB,OA,OD,易證S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,S△OAE=S△OBE,所以S四邊形AEOH+S四邊形CGOF=S四邊形DHOG+S四邊形BFOE,所以可以求出S四邊形DHOG.
詳解:連接OC,OB,OA,OD,
∵E、F、G、H依次是各邊中點,
∴△AOE和△BOE等底等高,
∴S△OAE=S△OBE,
同理可證,S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,
∴S四邊形AEOH+S四邊形CGOF=S四邊形DHOG+S四邊形BFOE,
∵S四邊形AEOH=7,S四邊形BFOE=9,S四邊形CGOF=10,
∴7+10=9+S四邊形DHOG,
解得,S四邊形DHOG=8.
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以直角三角形的直角頂點為原點,以所在直線為軸,軸建立平面直角坐標(biāo)系,點滿足
(1)則點的坐標(biāo)為__________;點的坐標(biāo)為____________.
(2)直角三角形的面積為_________.
(3)已知坐標(biāo)軸上有兩動點同時出發(fā),點從點出發(fā)沿軸負(fù)方向以1個單位長度每秒的速度勻速移動,點從點出發(fā)以2個單位長度每秒的速度沿軸正方向移動,點到達(dá)點整個運(yùn)動隨之結(jié)束。的中點的坐標(biāo)是,設(shè)運(yùn)動時間為秒,問:是否存在這樣的使?若存在,請求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖所示,某公路一側(cè)有A、B兩個送奶站,C為公路上一供奶站,CA和CB為供奶路線,現(xiàn)已測得AC=8km,BC=15km,AB=17km,∠1=30°,若有一人從C處出發(fā),沿公路邊向右行走,速度為2.5km/h,問:多長時間后這個人距B送奶站最近?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請閱讀求絕對值不等式|x|<3和|x|>3的解集的過程:
因為|x|<3,從如圖1所示的數(shù)軸上看:大于-3而小于3的數(shù)的絕對值是小于3的,所以|x|<3的解集是-3<x<3;
因為|x|>3,從如圖2所示的數(shù)軸上看:小大于-3的數(shù)和大于3的數(shù)的絕對值是大于3的,所以|x|>3的解集是x<-3或x>3.
解答下面的問題:
(1)不等式|x|<a(a>0)的解集為______;不等式|x|>a(a>0)的解集為______.
(2)解不等式|x-5|<3;
(3)解不等式|x-3|>5.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC沿DE、EF翻折,頂點A,B均落在點O處,且EA與EB重合于線段EO,若∠CDO+∠CFO=78°,則∠C的度數(shù)為=___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在今年“六一”期間,揚(yáng)州市某中學(xué)計劃組織初一學(xué)生到上海研學(xué),如果租用甲種客車2輛,乙種客車3輛,則可載180人,如果租用甲種客車3輛,乙種客車1輛,則可載165人.
(1)請問甲、乙兩種客車每輛分別能載客多少人?
(2)若該學(xué)校初一年級參加研學(xué)活動的師生共有303名,旅行社承諾每輛車安排一名導(dǎo)游,導(dǎo)游也需一個座位.旅行前,旅行社的一名導(dǎo)游由于有特殊情況,旅行社只能安排7名導(dǎo)游,為保證所租的每輛車均有一名導(dǎo)游,租車方案調(diào)整為:同時租65座、甲種客車和乙種客車的大小三種客車,出發(fā)時,所租的三種客車的座位恰好坐滿,請問旅行社的租車方案應(yīng)如何安排?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知四邊形ABCD為菱形,且A(0,3)、B(﹣4,0).
(1)求經(jīng)過點C的反比例函數(shù)的解析式;
(2)設(shè)P是(1)中所求函數(shù)圖象上一點,以P、O、A頂點的三角形的面積與△COD的面積相等.求點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com