若函數(shù),則當(dāng)函數(shù)值時,自變量的值是( )
A.± B.4 C.±或4  D.4或-
D

試題分析:此類試題分類求解:
當(dāng)滿足時,,因?yàn)橐獫M足,故此時x=
當(dāng)2x=8時,則有x=4,,所以x=4符合要求
綜上,故x=4或-,故選D
點(diǎn)評:在解題時要能靈運(yùn)用二次函數(shù)的圖象和性質(zhì)求出二次函數(shù)的解析式,利用數(shù)形結(jié)合思想解題是本題的關(guān)鍵.,
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù),當(dāng)自變量時,對應(yīng)的函數(shù)值大于0,當(dāng)自變量分別取,時對應(yīng)的函數(shù)值,則,滿足  
A.>0,>0B.<0,<0 C.<0,>0D.>0,<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,拋物線過點(diǎn)A(0,4)和C(8,0),P(t,0)是軸正半軸上的一個動點(diǎn),M是線段AP的中點(diǎn),將線段MP繞點(diǎn)P順時針旋轉(zhuǎn)90°得線段PB.過B作軸的垂線、過點(diǎn)A作軸的垂線,兩直線相交于點(diǎn)D.

(1)求b、c的值;
(2)當(dāng)t為何值時,點(diǎn)D落在拋物線上;
(3)是否存在,使得以A、B、D為頂點(diǎn)的三角形與△AOP相似?若存在,求此時的值;若不存在,請說明理由;
(4)連結(jié)AC,在點(diǎn)P運(yùn)動過程中,若以PB為直徑的圓與直線AC相切,直接寫出此時t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,它與x軸的兩個交點(diǎn)分別為(﹣1,0),(3,0).對于下列命題:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正確的有(  )
A.3個B.2個 C.1個D.0個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分6分)
手工課上,小明準(zhǔn)備做一個形狀是菱形的風(fēng)箏,這個菱形的兩條對角線長度之和恰好為60cm,菱形的面積S(單位:cm2)隨其中一條對角線的長x(單位:cm)的變化而變化.
(1)請直接寫出S與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍);
(2)當(dāng)x是多少時,菱形風(fēng)箏面積S最大?最大面積是多少?
參考公式:當(dāng)x=-時,二次函數(shù)y=ax2+bx+c(a≠0)有最。ù螅┲

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

將拋物線先向右平移2個單位,再向上平移1個單位后得到新的拋物線,則新拋物線的解析式是
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)圖象如圖所示,根據(jù)圖象可得:

(1)拋物線頂點(diǎn)坐標(biāo)             ;
(2)對稱軸為                ;
(3)當(dāng)x=    時,y有最大值是       ;
(4)當(dāng)              時,y隨著x得增大而增大。
(5)當(dāng)              時,y>0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的頂點(diǎn)坐標(biāo)是(    )
A.(2,-3);B.(0,-3);C.(-3,0);D.(2,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀下面的材料:
小明在學(xué)習(xí)中遇到這樣一個問題:若1≤xm,求二次函數(shù)的最大值.他畫圖研究后發(fā)現(xiàn),時的函數(shù)值相等,于是他認(rèn)為需要對進(jìn)行分類討論.
他的解答過程如下:
∵二次函數(shù)的對稱軸為直線
∴由對稱性可知,時的函數(shù)值相等.
∴若1≤m<5,則時,的最大值為2;
m≥5,則時,的最大值為

請你參考小明的思路,解答下列問題:
(1)當(dāng)x≤4時,二次函數(shù)的最大值為_______;
(2)若px≤2,求二次函數(shù)的最大值;
(3)若txt+2時,二次函數(shù)的最大值為31,則的值為_______.

查看答案和解析>>

同步練習(xí)冊答案