【題目】如圖,在ABC中,以BC為直徑的圓分別交邊AC、ABD、E兩點(diǎn),連接BD、DE.若BD平分∠ABC,則下列結(jié)論不一定成立的是( 。

A. BDAC B. AC2=2ABAE C. ADE是等腰三角形 D. BC=2AD

【答案】D

【解析】試題分析:利用圓周角定理可得A正確;證明△ADE∽△ABC,可得出B正確;由B選項(xiàng)的證明,即可得出C正確;利用排除法可得D不一定正確.

∵BC是直徑,

∴∠BDC=90°,

∴BD⊥AC,故A正確;

∵BD平分∠ABC,BD⊥AC

∴△ABC是等腰三角形,AD=CD,

∵∠AED=∠ACB,

∴△ADE∽△ABC,

∴△ADE是等腰三角形,

∴AD=DE=CD

===,

∴AC2=2ABAE,故B正確;

B的證明過程,可得C選項(xiàng)正確.

故選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二元一次方程2x+y=3,當(dāng)x=1時(shí),y=_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AEBC,CFAD,垂足分別為EF,AECF分別與BD交于點(diǎn)GH,且AB=

1)若tan∠ABE =2,求CF的長(zhǎng);

2)求證:BG=DH

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,,直線MN分別與x軸、y軸交于點(diǎn)M6,0),N0 ),等邊△ABC的頂點(diǎn)B與原點(diǎn)O重合,BC邊落在x軸正半軸上,點(diǎn)A恰好落在線段MN上,將等邊△ABC從圖l的位置沿x軸正方向以每秒l個(gè)單位長(zhǎng)度的速度平移,邊ABAC分別與線段MN交于點(diǎn)E,F(如圖2所示),設(shè)△ABC平移的時(shí)間為ts).

1)等邊△ABC的邊長(zhǎng)為_______;

2)在運(yùn)動(dòng)過程中,當(dāng)t=_______時(shí),MN垂直平分AB;

3)若在△ABC開始平移的同時(shí).點(diǎn)P從△ABC的頂點(diǎn)B出發(fā).以每秒2個(gè)單位長(zhǎng)度的速度沿折線BAAC運(yùn)動(dòng).當(dāng)點(diǎn)P運(yùn)動(dòng)到C時(shí)即停止運(yùn)動(dòng).△ABC也隨之停止平移.

①當(dāng)點(diǎn)P在線段BA上運(yùn)動(dòng)時(shí),若△PEF與△MNO相似.求t的值;

②當(dāng)點(diǎn)P在線段AC上運(yùn)動(dòng)時(shí),設(shè),求St的函數(shù)關(guān)系式,并求出S的最大值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,坐標(biāo)原點(diǎn)O是菱形ABCD的對(duì)稱中心.邊ABx軸平行,點(diǎn)B1,-2),反比例函數(shù)k≠0)的圖象經(jīng)過AC兩點(diǎn).

1)求點(diǎn)C的坐標(biāo)及反比例函數(shù)的解析式.

2)直線BC與反比例函數(shù)圖象的另一交點(diǎn)為E,求以OC,E為頂點(diǎn)的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果 (a 1) x a 1 的解集是 x 1 ,那么 a 的取值范圍是(

A.a 0B.a 1C.a 1D.a 是任意有理數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AGF=ABC,1+2=180°.

(1)試判斷BFDE的位置關(guān)系,并說明理由;

(2)BFAC,2=150°,求∠AFG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,將三角形各頂點(diǎn)的縱坐標(biāo)都減去1,橫坐標(biāo)保持不變,所得圖形與原圖形相比是(

A.向下平移了1個(gè)單位B.向上平移了1個(gè)單位

C.向左平移了1個(gè)單位D.向右平移了1個(gè)單位

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果把收入30元記作 +30元,那么支出20元可記作________

查看答案和解析>>

同步練習(xí)冊(cè)答案