【題目】如圖,在正方形ABCD中,點(diǎn)E在對(duì)角線AC上,點(diǎn)F在邊BC上,連接BE、DF,DF交對(duì)角線AC于點(diǎn)G,且DE=DG.
(1)求證:AE=CG;
(2)試判斷BE和DF的位置關(guān)系,并說明理由.
【答案】(1)證明見解析;(2)BE∥DF,理由見解析.
【解析】
試題分析:(1)先證∠AED=∠CGD,再證明△ADE≌△CDG,根據(jù)全等三角形的對(duì)應(yīng)邊相等即可得出結(jié)論;
(2)先證明△AEB≌△CGD,得出對(duì)應(yīng)角相等∠AEB=∠CGD,得出∠AEB=∠EGF,即可證出平行線.
試題解析:(1)在正方形ABCD中,
∵AD=CD,
∴∠DAE=∠DCG,
∵DE=DG,
∴∠DEG=∠DGE,
∴∠AED=∠CGD.
在△AED和△CGD中,
∴△AED≌△CGD(AAS),
∴AE=CG.
(2)BE∥DF,理由如下:
在正方形ABCD中,AB∥CD,
∴∠BAE=∠DCG.
在△AEB和△CGD中,
∴△AEB≌△CGD(SAS),
∴∠AEB=∠CGD.
∵∠CGD=∠EGF,
∴∠AEB=∠EGF,
∴BE∥DF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論:
①數(shù)軸上的點(diǎn)只能表示有理數(shù);
②任何一個(gè)無理數(shù)都能用數(shù)軸上的點(diǎn)表示;
③實(shí)數(shù)與數(shù)軸上的點(diǎn)一一對(duì)應(yīng);
④有理數(shù)有無限個(gè),無理數(shù)有有限個(gè).
其中,正確的結(jié)論有個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=x2-3x+交y軸于點(diǎn)E,C為拋物線的頂點(diǎn),直線AD:y=kx+b(k>0)與拋物線相交于A,D兩點(diǎn)(點(diǎn)D在點(diǎn)A的下方).
(1)當(dāng)k=2,b=-3時(shí),求A,D兩點(diǎn)坐標(biāo);
(2)當(dāng)b=2-3k時(shí),直線AD交拋物線的對(duì)稱軸于點(diǎn)P,交線段CE于點(diǎn)F,求的最小值;
(3)當(dāng)b=0時(shí),若B是拋物線上點(diǎn)A的對(duì)稱點(diǎn),直線BD交對(duì)稱軸于點(diǎn)M,求證:PC=CM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,AB=AC=8,∠BAC=30°,將△ABC繞點(diǎn)A旋轉(zhuǎn),使點(diǎn)B落在原△ABC的點(diǎn)C處,此時(shí)點(diǎn)C落在點(diǎn)D處,延長(zhǎng)線段AD,交原△ABC的邊BC的延長(zhǎng)線于點(diǎn)E,那么線段DE的長(zhǎng)等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)軸上,a所表示的點(diǎn)總在b所表示的點(diǎn)的右邊,且|a|=6,|b|=3,則a-b的值為( )
A. -3 B. -9 C. -3或-9 D. 3或9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形,點(diǎn)D、F分別在線段BC、AB上,∠EFB=60°,DC=EF.
(1)求證:四邊形EFCD是平行四邊形;
(2)若BF=EF,求證:AE=AD.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com