【題目】(問題提出)|a1|+|a2|+|a3|++|a2019|最小值是多少?

(閱讀理解)

為了解決這個(gè)問題,我們先從最簡(jiǎn)單的情況入手.|a|的幾何意義是a這個(gè)數(shù)在數(shù)軸上對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離.那么|a1|可以看做a這個(gè)數(shù)在數(shù)軸上對(duì)應(yīng)的點(diǎn)到1的距離;|a1|+|a2|就可以看作a這個(gè)數(shù)在數(shù)軸上對(duì)應(yīng)的點(diǎn)到12兩個(gè)點(diǎn)的距離之和.下面我們結(jié)合數(shù)軸研究|a1|+|a2|的最小值.

我們先看a表示的點(diǎn)可能的3種情況,如圖所示:

1)如圖a1的左邊,從圖中很明顯可以看出a12的距離之和大于1

2)如圖,a12之間(包括在12上),可以看出a12的距離之和等于1

3)如圖a2的右邊,從圖中很明顯可以看出a12的距離之和大于1

(問題解決)

1|a2|+|a5|的幾何意義是   .請(qǐng)你結(jié)合數(shù)軸探究:|a2|+|a5|的最小值是   

2|a1|+|a2|+|a3|的幾何意義是   .請(qǐng)你結(jié)合數(shù)軸探究:|a1|+|a2|+|a3|的最小值是   ,并在圖的數(shù)軸上描出得到最小值時(shí)a所在的位置,由此可以得出a   

3)求出|a1|+|a2|+|a3|+|a4|+|a5|的最小值.

4)求出|a1|+|a2|+|a3|++|a2019|的最小值.

(拓展應(yīng)用)

請(qǐng)?jiān)趫D的數(shù)軸上表示出a,使它到25的距離之和小于4,并直接寫出a的范圍.

【答案】(1)a這個(gè)數(shù)在數(shù)軸上對(duì)應(yīng)的點(diǎn)到25兩個(gè)點(diǎn)的距離之和,3; 2a這個(gè)數(shù)在數(shù)軸上對(duì)應(yīng)的點(diǎn)到1、23三個(gè)點(diǎn)的距離之和;2;2;(36;(41019090

【解析】

1)根據(jù)絕對(duì)值的幾何意義結(jié)合數(shù)軸即可求解;

2)由題意可得出,取中間值a2時(shí),求得最小值;

3)由題意可得出,取中間值a3時(shí),求得最小值;

4)由題意可得出,取中間值a1010時(shí),求得最小值.

解:(1|a2|+|a5|的幾何意義是a這個(gè)數(shù)在數(shù)軸上對(duì)應(yīng)的點(diǎn)到25兩個(gè)點(diǎn)的距離之和;

當(dāng)a52之間時(shí)(包括在5,2上),

可以看出a52的距離之和等于3,

此時(shí)|a2|+|a5|取得最小值是3

故答案為:a這個(gè)數(shù)在數(shù)軸上對(duì)應(yīng)的點(diǎn)到25兩個(gè)點(diǎn)的距離之和;3

2|a1|+|a2|+|a3|的幾何意義是a這個(gè)數(shù)在數(shù)軸上對(duì)應(yīng)的點(diǎn)到1、23三個(gè)點(diǎn)的距離之和.

當(dāng)a取中間數(shù)時(shí),絕對(duì)值最小,|a1|+|a2|+|a3|的最小值是1+0+12;

如圖所示:

故答案為:a這個(gè)數(shù)在數(shù)軸上對(duì)應(yīng)的點(diǎn)到123三個(gè)點(diǎn)的距離之和;2;2

3)當(dāng)a取中間數(shù)3時(shí),絕對(duì)值最小,

|a1|+|a2|+|a3|+|a4|+|a5|的最小值是:2+1+0+1+26

4)當(dāng)a取中間數(shù)1010時(shí),絕對(duì)值最小,

|a1|+|a2|+|a3|…+|a2019|的最小值為:

1009+1008+1007+…+1+0+1+2+3+…+10091009×1009+1)=1019090

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果關(guān)于x的一元二次方程x2kx+20中,k是投擲骰子所得的數(shù)字(1,2,34,56),則該二次方程有兩個(gè)不等實(shí)數(shù)根的概率為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線為常數(shù),且)與軸從左至右依次交于A,B兩點(diǎn),與軸交于點(diǎn)C,經(jīng)過點(diǎn)B的直線與拋物線的另一交點(diǎn)為D.

1)若點(diǎn)D的橫坐標(biāo)為-5,求拋物線的函數(shù)表達(dá)式;

2)若在第一象限的拋物線上有點(diǎn)P,使得以A,BP為頂點(diǎn)的三角形與△ABC相似,求的值;

3)在(1)的條件下,設(shè)F為線段BD上一點(diǎn)(不含端點(diǎn)),連接AF,一動(dòng)點(diǎn)M從點(diǎn)A出發(fā),沿線段AF以每秒1個(gè)單位的速度運(yùn)動(dòng)到F,再沿線段FD以每秒2個(gè)單位的速度運(yùn)動(dòng)到D后停止. 當(dāng)點(diǎn)F的坐標(biāo)是多少時(shí),點(diǎn)M在整個(gè)運(yùn)動(dòng)過程中用時(shí)最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)今,青少年用電腦手機(jī)過多,視力水平下降已引起了全社會(huì)的關(guān)注,某校為了解八年級(jí)1000名學(xué)生的視力情況,從中抽查了150名學(xué)生的視力情況,通過數(shù)據(jù)處理,得到如下的頻數(shù)分布表.解答下列問題:

視力范圍分組

組中值

頻數(shù)

3.95≤x4.25

4.1

20

4.25≤x4.55

4.4

10

4.55≤x4.85

4.7

30

4.85≤x5.15

5.0

60

5.15≤x5.45

5.3

30

合計(jì)

150

1)分別指出參加抽測(cè)學(xué)生的視力的眾數(shù)、中位數(shù)所在的范圍;

2)若視力為4.85以上(含4.85)為正常,試估計(jì)該校八年級(jí)學(xué)生視力正常的人數(shù)約為多少?

3)根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)時(shí),統(tǒng)計(jì)中常用各組的組中值代表各組的實(shí)際數(shù)據(jù),把各組的頻數(shù)相應(yīng)組中的權(quán).請(qǐng)你估計(jì)該校八年級(jí)學(xué)生的平均視力是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了豐富校園文化,某校決定舉行學(xué)生趣味運(yùn)動(dòng)會(huì),將比賽項(xiàng)目確定為袋鼠跳,夾球跑,跳大繩,綁腿跑和拔河賽5項(xiàng),為了解學(xué)生對(duì)這5項(xiàng)運(yùn)動(dòng)的喜歡情況,隨機(jī)調(diào)查了該校部分學(xué)生最喜歡的一種項(xiàng)目(每名學(xué)生必選且只能選擇5項(xiàng)中的一種),并將調(diào)查結(jié)果繪制成如圖所示的不完整的統(tǒng)計(jì)圖表:

根據(jù)圖表中提供的信息解答下列問題:

1)求a,b的值.

2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整.

3)根據(jù)調(diào)查結(jié)果,請(qǐng)你估計(jì)該校2500名學(xué)生中有多少名學(xué)生最喜歡綁腿跑.

學(xué)生最喜歡的活動(dòng)項(xiàng)目的人數(shù)統(tǒng)計(jì)表

項(xiàng)目

學(xué)生數(shù)(名)

百分比(%

袋鼠跳

45

15

夾球跑

a

10

跳大繩

75

25

綁腿跑

b

20

拔河賽

90

30

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)如今,通過“微信運(yùn)動(dòng)“發(fā)布自己每天行走的步數(shù),已成為一種時(shí)尚,“健身達(dá)人”小華為了了解他的微信朋友圈里大家的“建步走運(yùn)動(dòng)“情況,隨機(jī)抽取了20名好友一天行走的步數(shù),記錄如下:

5640

6430

6320

6798

7325

8430

8215

7453

7446

6754

7638

6834

7325

6830

8648

8753

9450

9865

7290

7850

對(duì)這20個(gè)數(shù)據(jù)按組距1000進(jìn)行分組,并統(tǒng)計(jì)整理,繪制了如下尚不完整的統(tǒng)計(jì)圖表:

組別

步數(shù)分組

頻數(shù)

A

5500x6500

2

B

6500x7500

10

C

7500x8500

m

D

8500x9500

2

E

9500x10500

n

請(qǐng)根據(jù)以上信息解答下列問題:

(1)填空:m   ,n   

(2)補(bǔ)全頻數(shù)分布直方圖.

(3)根據(jù)以上統(tǒng)計(jì)結(jié)果,第二天小華隨機(jī)查看一名好友行走的步數(shù),試估計(jì)該好友的步數(shù)不低于7500(7500)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是我國(guó)古代數(shù)學(xué)的經(jīng)典著作,書中有一個(gè)問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計(jì)).問黃金、白銀每枚各重多少兩?設(shè)每枚黃金重x兩,每枚白銀重y兩,根據(jù)題意得( 。

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(a≠0)交x軸于A、B兩點(diǎn),A點(diǎn)坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,4),以O(shè)C、OA為邊作矩形OADC交拋物線于點(diǎn)G.

(1)求拋物線的解析式;

(2)拋物線的對(duì)稱軸l在邊OA(不包括O、A兩點(diǎn))上平行移動(dòng),分別交x軸于點(diǎn)E,交CD于點(diǎn)F,交AC于點(diǎn)M,交拋物線于點(diǎn)P,若點(diǎn)M的橫坐標(biāo)為m,請(qǐng)用含m的代數(shù)式表示PM的長(zhǎng);

(3)在(2)的條件下,連結(jié)PC,則在CD上方的拋物線部分是否存在這樣的點(diǎn)P,使得以P、C、F為頂點(diǎn)的三角形和AEM相似?若存在,求出此時(shí)m的值,并直接判斷PCM的形狀;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于某一函數(shù)給出如下定義:若存在實(shí)數(shù)p,當(dāng)其自變量為p時(shí),其函數(shù)值等于p,則稱p為這個(gè)函數(shù)的不變值,在函數(shù)存在不變值時(shí),該函數(shù)的最大不變值與最小不變值之差q稱為這個(gè)函數(shù)的不變長(zhǎng)度.特別地,當(dāng)函數(shù)只有一個(gè)不變值時(shí),其不變長(zhǎng)度q為零.

(1)判斷函數(shù)y=有沒有不變值?如果有,直接寫出其不變長(zhǎng)度.

(2)函數(shù)y=3x2-bx

①若其不變長(zhǎng)度為零,求b的值;

②若2≤b≤5,求其不變長(zhǎng)度q的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案