【題目】如圖①是一個(gè)小箱子ABCDE放在桌面MN上的示意圖,BC這部分可彎曲,在彎曲時(shí)形成一段圓弧,設(shè)圓弧所在圓的圓心為O,線段ABCD均與圓弧相切,點(diǎn)B,C分別為切點(diǎn),小箱子蓋面CD與桌面MN平行,此時(shí)CD距離桌面14cm,已知AB的長10cm,CD的長為25.2cm

1)如圖①,求弧BC的長度(結(jié)果保留π).

2)如圖②,若小箱子ABCDE打開后弧BC所對(duì)的圓心角度數(shù)為60°,求小箱子頂端D到桌面MN的距離DH(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):≈1.73

【答案】1cm);(2)頂端D到桌面MN的距離是27.8 cm

【解析】

1)根據(jù)題意推出∠BOC90°,半徑OC4cm,即可得出弧BC的長度;

2)過點(diǎn)CCPDH于點(diǎn)P,作CGOBG,得矩形CGQP,則CPOB,由題可得DPCD×25.212.6cm,根據(jù)弧BC的長度為2πcm,可得OBOC6cm,由此可得CGOCsin60°3≈5.2cm,即可求出DH

解:(1)如圖①,

∵線段AB,CD均與圓弧相切,

OBABOCCD,

CDOBAM,

∴∠BOC=∠OCD90°,

CD距離桌面14cm,AB的長為10cm,

∴半徑OC4cm,

∴弧BC的長度為cm);

2)如圖②,過點(diǎn)CCPDH于點(diǎn)P,作CGOBG,得矩形CGQP,則CPOB,

∴∠OCP=∠BOC60°,

∵∠OCD90°

∴∠PCD30°,

DPCD×25.212.6cm),

∵弧BC的長度為2πcm,

,

OBOC6cm,

CGOCsin60°3≈5.2cm),

DHDP+CG+AB12.6+5.2+1027.8cm),

故頂端D到桌面MN的距離是27.8cm

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,EF,EB⊙O的弦,且EF=EBEFAB交于點(diǎn)C,連接OF,若∠AOF=40°,則∠F的度數(shù)是(

A.20°B.35°C.40°D.55°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小李在景區(qū)銷售一種旅游紀(jì)念品,已知每件進(jìn)價(jià)為6元,當(dāng)銷售單價(jià)定為8元時(shí),每天可以銷售200件.市場調(diào)查反映:銷售單價(jià)每提高1元,日銷量將會(huì)減少10件,物價(jià)部門規(guī)定:銷售單價(jià)不能超過12元,設(shè)該紀(jì)念品的銷售單價(jià)為x(元),日銷量為y(件),日銷售利潤為w(元).

1)求yx的函數(shù)關(guān)系式.

2)要使日銷售利潤為720元,銷售單價(jià)應(yīng)定為多少元?

3)求日銷售利潤w(元)與銷售單價(jià)x(元)的函數(shù)關(guān)系式,當(dāng)x為何值時(shí),日銷售利潤最大,并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)的圖象與一次函數(shù)的圖象相交于點(diǎn)A1,4)和點(diǎn)Bn,).

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)當(dāng)一次函數(shù)的值小于反比例函數(shù)的值時(shí),直接寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC,按以下步驟作圖:①分別以B,C為圓心,以大于BC的長為半徑作弧,兩弧相交于兩點(diǎn)M,N;②作直線MN交直線AB于點(diǎn)D,連接CD.若∠ABC40°,∠ACD30°,則∠BAC的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲轉(zhuǎn)盤被分成3個(gè)面積相等的扇形,乙轉(zhuǎn)盤被分成2個(gè)半圓,每一個(gè)扇形或半圓都標(biāo)有相應(yīng)的數(shù)字.同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止后,設(shè)甲轉(zhuǎn)盤中指針?biāo)竻^(qū)域內(nèi)的數(shù)字為x,乙轉(zhuǎn)盤中指針?biāo)竻^(qū)域內(nèi)的數(shù)字為y(當(dāng)指針指在邊界線上時(shí),重轉(zhuǎn)一次,直到指針指向一個(gè)區(qū)域?yàn)橹梗?/span>

1)請(qǐng)你用畫樹狀圖或列表格的方法,列出所有等可能情況,并求出點(diǎn)(xy)落在坐標(biāo)軸上的概率;

2)直接寫出點(diǎn)(xy)落在以坐標(biāo)原點(diǎn)為圓心,2為半徑的圓內(nèi)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB8,AD6EAB邊上一點(diǎn),將BEC沿CE翻折,點(diǎn)B落在點(diǎn)F處,當(dāng)AEF為直角三角形時(shí),BE________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸交于A(﹣1,0),B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C03),作直線BC.動(dòng)點(diǎn)Px軸上運(yùn)動(dòng),過點(diǎn)PPMx軸,交拋物線于點(diǎn)M,交直線BC于點(diǎn)N,設(shè)點(diǎn)P的橫坐標(biāo)為m

1)求拋物線的解析式;

2)當(dāng)點(diǎn)P在線段OB上運(yùn)動(dòng)時(shí),求線段MN的最大值;

3)是否存在點(diǎn)P,使得以點(diǎn)C、OM、N為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】AB兩地之間為直線距離且相距600千米,甲開車從A地出發(fā)前往B地,乙騎自行車從B地出發(fā)前往A地,已知乙比甲晚出發(fā)1小時(shí),兩車均勻速行駛,當(dāng)甲到達(dá)B地后立即原路原速返回,在返回途中再次與乙相遇后兩車都停止,如圖是甲、乙兩人之間的距離s(千類)與甲出發(fā)的時(shí)間t(小時(shí))之間的圖象,則當(dāng)甲第二次與乙相遇時(shí),乙離B地的距離為_____千米.

查看答案和解析>>

同步練習(xí)冊(cè)答案