【題目】如圖,在平面直角坐標系中,反比例函數(shù)的圖象經(jīng)過□的頂點,若點的坐標分別為,,點的橫坐標和縱坐標之和為,則的值為( )
A.B.C.D.
【答案】D
【解析】
由已知可設(shè)C(x,7.5-x),根據(jù)平移的性質(zhì)可得D(3+x,7.5-x-4),再根據(jù)反比例函數(shù)性質(zhì)得x(7.5-x)=(3+x)(3.5-x),再求k= x(7.5-x).
因為點C的橫坐標和縱坐標之和為7.5,
所以可設(shè)C(x,7.5-x)
因為四邊形ABCD是平行四邊形
所以AB平移可得CD,A的對應(yīng)點是D
所以D(3+x,7.5-x-4),即D(3+x,3.5-x)
因為C,D在反比例函數(shù)圖象上
所以x(7.5-x)=(3+x)(3.5-x)
解得x=1.5
所以7.5-x=6
所以k= x(7.5-x)=9
故答案為:D
科目:初中數(shù)學 來源: 題型:
【題目】如圖拋物線y=x2+bx+c(c<0)與x軸交于A、B兩點,(點A在點B的左側(cè)),與y軸交于點C,頂點為D,且OB=OC=3,點E為線段BD上的一個動點,EF⊥x軸于F.
(1)求拋物線的解析式;
(2)是否存在點E,使△ECF為直角三角形?若存在,求點E的坐標;不存在,請說明理由;
(3)連接AC、BC,若點P是拋物線上的一個動點,當P運動到什么位置時,∠PCB=∠ACO,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校隨機抽取部分學生就“你是否喜歡網(wǎng)課”進行問卷調(diào)查,并將調(diào)查結(jié)果進行統(tǒng)計后,繪制成如下統(tǒng)計表和扇形統(tǒng)計圖.
(1)在統(tǒng)計表中, , ;
(2)求出扇形統(tǒng)計圖中“喜歡”網(wǎng)課所對應(yīng)扇形的圓心角度數(shù);
(3)己知該校共有2 000名學生,試估計該!胺浅O矚g”網(wǎng)課的學生有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)計算: +|1-|-2cos30+()-1-(2019-)0
(2)解不等式組,并求出它的整數(shù)解,再化簡代數(shù)式,從上述整數(shù)解中選擇一個合適的數(shù),求此代數(shù)式的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一次函數(shù)y=k1x+b和反比例函數(shù)的圖象相交于點P(m1,n+1),點Q(0,a)在函數(shù)y=k1x+b的圖象上,且m,n是關(guān)于x的方程ax2(3a+1)x+2(a+1)=0的兩個不相等的整數(shù)根(其中a為整數(shù)),求一次函數(shù)和反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】多肉植物由于體積小、外形萌,近年來受到廣大養(yǎng)花愛好者的青睞.創(chuàng)業(yè)青年小宇利用這個商機,去花卉市場選購各種多肉,了解到甲、乙、丙三種多肉的部分價格如下表.
多肉種類 價格 | 甲 | 乙 | 丙 |
批發(fā)價(元/株) | |||
零售價(元/株) |
(1)已知小宇第一次批發(fā)購進甲多肉株,乙多肉株,共花費元,且甲多肉每株的批發(fā)價比乙多肉低元,求甲多肉、乙多肉每株的批發(fā)價.
(2)由于銷量好,第一次多肉全部售完,小宇用第一次的銷售收入再批發(fā)甲、乙、丙三種多肉,且購進甲、乙多肉的株數(shù)相等,但乙多肉的批發(fā)價每株比原來降低,甲多肉的批發(fā)價,每株比原來提高.
①若他第二次批發(fā)購進甲、乙兩種多肉分別花費元、元,求的值.
②在的值不變的前提下,小宇把第一次的銷售收入全用于第二次多肉批發(fā),若第二次銷售完這三種多肉所得利潤為元,當丙多肉的株數(shù)不少于時,求的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形中,相交于點,過點作射線,點是射線上一動點,連接交于點,以為一邊,作正方形,且點在正方形的內(nèi)部,連接.
(1)求證:;
(2)設(shè),正方形的邊長為,求關(guān)于的函數(shù)關(guān)系式,并寫出定義域;
(3)連接,當是等腰三角形時,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為迎接2020年高中招生考試,某中學對全校九年級學生進行了一次數(shù)學摸底考試,并隨機抽取了部分學生的測試成績作為樣本進行分析,繪制成了如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中所給信息,解答下列問題:
(1)請將表示成績類別為“中”的條形統(tǒng)計圖補充完整;
(2)請將表示成績類別為“優(yōu)”的扇形統(tǒng)計圖補充完整,并計算成績類別為“優(yōu)”的扇形所對應(yīng)的圓心角的度數(shù);
(3)學校九年級共有人參加了這次數(shù)學考試,估算該校九年級共有多少名學生的數(shù)學成績可以達到優(yōu)秀.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知、,B為y軸上的動點,以AB為邊構(gòu)造,使點C在x軸上,為BC的中點,則PM的最小值為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com