【題目】△ABC中,∠C=90°,∠BAC的平分線交BC于D,且CD=15,AC=30,則AB的長為(

A. 30 B. 40 C. 50 D. 60

【答案】C

【解析】

DEAB,易得ABC∽△DBE,則,設(shè)BD=x,BE=y,則,解得x=2y-15,在RtDBE中,BD2=DE2+BE2,即(2y-15)2=y2+152,求得y的值,即可求得AB.

如圖,作DEAB,

∴∠BED=90°,

∴∠BED=C=90°,

∵∠EBD=ABC,

∴△ABC∽△DBE,

,

設(shè)BD=x,BE=y,則,

30y=152+15x,

x=2y-15,

RtDBE中,BD2=DE2+BE2,

即(2y-15)2=y2+152,

y(y-20)=0,

y=20,

AB=AE+BE=30+20=50.

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l與⊙O 相離,OA⊥l于點A,交⊙O 于點P,點B是⊙O上一點,連接BP并延長,交直線l于點C,使得AB=AC.

(1)求證:AB是⊙O的切線;

(2)若PC=2,OA=3,求線段PB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,內(nèi)并排不重疊放入邊長為1的小正方形紙片,第一層小紙片的一條邊都在AB上,首尾兩個正方形各有一個頂點分別在AC、BC上,依次這樣擺放上去,則最多能擺放  個小正方形紙片.

A. 14 B. 15 C. 16 D. 17

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知函數(shù) y=x+1 的圖象與 y 軸交于點 A,一次函數(shù) y=kx+b 的圖象經(jīng)過點 B0,﹣1),與x 以及 y=x+1 的圖象分別交于點 C、D,且點 D 的坐標(biāo)為1n),

1n= ,k= ,b= ;

2函數(shù) y=kx+b 的函數(shù)值大于函數(shù) y=x+1 的函數(shù)值則X的取值范圍是 ;

3求四邊形 AOCD 的面積;

4 x軸上是否存在 P,使得以點 P,CD 為頂點的三角形是直角三角形?若存在求出點 P 的坐標(biāo); 若不存在請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣2=0.

(1)若該方程有兩個實數(shù)根,求m的最小整數(shù)值;

(2)若方程的兩個實數(shù)根為x1,x2,且(x1﹣x22+m2=21,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線ACBD交于點O,過點AAEBC于點E,延長BCF,使CF=BE,連接DF

1)求證:四邊形AEFD是矩形;

2)若AC=4,∠ABC=60°,求矩形AEFD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于一次函數(shù)y=kx+bk≠0),我們稱函數(shù)y[m]=為它的m分函數(shù)(其中m為常數(shù)).例如,y=3x+24分函數(shù)為:當(dāng)x≤4時,y[4]=3x+2;當(dāng)x4時,y[4]=-3x-2

1)如果y=x+1-1分函數(shù)為y[-1],

①當(dāng)x=4時,y[-1]______;當(dāng)y[-1]=-3時,x=______

②求雙曲線y=y[-1]的圖象的交點坐標(biāo);

2)如果y=-x+20分函數(shù)為y[0],正比例函數(shù)y=kxk≠0)與y=-x+20分函數(shù)y[0]的圖象無交點時,直接寫出k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B在一直線上,小明從點A出發(fā)沿AB方向勻速前進(jìn),4秒后走到點D,此時他(CD)在某一燈光下的影長為AD,繼續(xù)沿AB方向以同樣的速度勻速前進(jìn)4秒后到點F,此時他(EF)的影長為2米,然后他再沿AB方向以同樣的速度勻速前進(jìn)2秒后達(dá)點H,此時他(GH)處于燈光正下方.

(1)請在圖中畫出光源O點的位置,并畫出他位于點F時在這個燈光下的影長FM(不寫畫法);

(2)求小明沿AB方向勻速前進(jìn)的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,將點A翻折到對角線BD上的點M處,折痕BEAD于點E.將點C翻折到對角線BD上的點N處,折痕DFBC于點F

1)求證:四邊形BFDE為平行四邊形;

2)若四邊形BFDE為菱形,且AB2,求BC的長.

查看答案和解析>>

同步練習(xí)冊答案