【題目】二次函數(shù)a、b、c為常數(shù),且)的xy的部分對應(yīng)值如下表:

有下列結(jié)論:①a0;②4a-2b+10;③x=-3是關(guān)于x的一元二次方程ax2+b-1x+c=0的一個根;④當(dāng)-3≤x≤n時,ax2+b-1x+c≥0.其中結(jié)論正確的有____.

【答案】①②③.

【解析】

根據(jù)表中xy的部分對應(yīng)值畫出拋物線的草圖,由開口方向即可判斷①,由對稱軸x=-1可得b=2a,代入4a-2b+1可判斷②,根據(jù)直線y=x過點(-3,-3)、(n,n)可知直線y=x與拋物線y=ax2+bx+c交于點(-3,-3)、(nn),即可判斷③,根據(jù)直線y=x與拋物線在坐標(biāo)系中位置可判斷④.

根據(jù)表中xy的部分對應(yīng)值,畫圖如下:

由拋物線開口向上,得a0,故①正確;

∵拋物線對稱軸為x==-1,即-=-1,

b=2a,

4a-2b+1=4a-4a+1=10,故②正確;

∵直線y=x過點(-3-3)、(n,n),

∴直線y=x與拋物線y=ax2+bx+c交于點(-3-3)、(nn),

x=-3x=n是方程ax2+bx+c=x,即ax2+b-1x+c=0的兩個實數(shù)根,故③正確;

由圖象可知當(dāng)-3≤x≤n時,直線y=x位于拋物線y=ax2+bx+c上方,

x≥ax2+bx+c,

ax2+b-1x+c≤0,故④錯誤;

故答案為:①②③.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在金融危機的影響下,國家采取擴大內(nèi)需的政策,基建投資成為拉動內(nèi)需最強有力的引擎.現(xiàn)金強公司中標(biāo)一項工程,在甲、乙兩地施工,其中甲地需推土機30臺,乙地需推土機26臺,公司在A、B兩地分別庫存推土機32臺和24臺,現(xiàn)從A地運一臺到甲、乙兩地的費用分別是400元和300元,從B地運一臺到甲、乙兩地的費用分別為200元和500元.若設(shè)從A地運往甲地臺推土機,運甲、乙兩地所需的這批推土機的總費用為元.

(1)求的函數(shù)關(guān)系式;

(2)公司應(yīng)設(shè)計怎樣的方案,能使運送這批推土機的總費用最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)有員工300人生產(chǎn)A種產(chǎn)品,平均每人每年可創(chuàng)造利潤m萬元(m為大于零的常數(shù)).為減員增效,決定從中調(diào)配x人去生產(chǎn)新開發(fā)的B種產(chǎn)品.根據(jù)評估,調(diào)配后繼續(xù)生產(chǎn)A種產(chǎn)品的員工平均每人每年創(chuàng)造的利潤可增加20%,生產(chǎn)B種產(chǎn)品的員工平均每人每年可創(chuàng)造利潤1.54m萬元.

1)調(diào)配后企業(yè)生產(chǎn)A種產(chǎn)品的年利潤為   萬元,生產(chǎn)B種產(chǎn)品的年利潤為   萬元(用含m的代數(shù)式表示).若設(shè)調(diào)配后企業(yè)全年的總利潤為y萬元,則y關(guān)于x的關(guān)系式為   ;

2)若要求調(diào)配后企業(yè)生產(chǎn)A種產(chǎn)品的年利潤不少于調(diào)配前企業(yè)年利潤的五分之四,生產(chǎn)B種產(chǎn)品的年利潤大于調(diào)配前企業(yè)年利潤的一半,應(yīng)有哪幾種調(diào)配方案?請設(shè)計出來,并指出其中哪種方案全年總利潤最大(必要時運算過程可保留3個有效數(shù)字).

3)企業(yè)決定將(2)中的年最大總利潤(m2)繼續(xù)投資開發(fā)新產(chǎn)品,現(xiàn)有六種產(chǎn)品可供選擇(不得重復(fù)投資同一種產(chǎn)品),各產(chǎn)品所需資金以及所獲利潤如下表:

產(chǎn) 品

C

D

E

F

G

H

所需資金(萬元)

200

348

240

288

240

500

年 利 潤(萬元)

50

80

20

60

40

85

如果你是企業(yè)決策者,為使此項投資所獲年利潤不少于145萬元,你可以投資開發(fā)哪些產(chǎn)品?請你寫出兩種投資方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,CBG=A,CD為直徑,OCAB相交于點E,過點EEFBC,垂足為F,延長CDGB的延長線于點P,連接BD.

(1)求證:PG與⊙O相切;

(2)若=,求的值;

(3)在(2)的條件下,若⊙O的半徑為8,PD=OD,求OE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,點O在斜邊AB上,以O為圓心,OB為半徑作圓,分別與BC,AB相交于點D,E,連接AD.已知∠CAD=∠B

1)求證:AD是⊙O的切線;

2)若CD2,AC4BD6,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖,已知線段,請在給出的圖形上用尺規(guī)作出,使得:點在射線上,點在射線上,且;(保留作圖痕跡,不寫作法)

(2)求證:直角三角形斜邊上的中線等于斜邊的一半.(要求:利用(1)中的Rt,畫出斜邊上的中線,寫出已知、求證和證明過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某排球隊6名場上隊員的身高(單位:cm)是:180184,188,190,192,194.現(xiàn)用一名身高為186cm的隊員換下場上身高為192cm的隊員,與換人前相比,場上隊員的身高( )

A. 平均數(shù)變小,中位數(shù)變小

B. 平均數(shù)變小,中位數(shù)變大

C. 平均數(shù)變大,中位數(shù)變小

D. 平均數(shù)變大,中位數(shù)變大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,DA、DC分別切O于點A,C,且AB=AD

1)求tan∠AOD的值.

2AC,OD交于點E,連結(jié)BE

AEB的度數(shù);

連結(jié)BDO于點H,若BC=1,求CH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,ABAC,∠ABC=70°

(1)用直尺和圓規(guī)作∠ABC的平分線BDAC于點D(保留作圖痕跡,不要求寫作法)

(2)在(1)的條件下,∠BDC   

查看答案和解析>>

同步練習(xí)冊答案