【題目】如圖,某反比例函數圖象的一支經過點A(2,3)和點B(點B在點A的右側),作BC⊥y軸,垂足為點C,連結AB,AC.
(1)求該反比例函數的解析式;
(2)若△ABC的面積為6,求直線AB的表達式.
【答案】(1)y;(2)yx+4.
【解析】
(1)把A的坐標代入反比例函數的解析式即可求得;
(2)作AD⊥BC于D,則D(2,b),即可利用a表示出AD的長,然后利用三角形的面積公式即可得到一個關于b的方程,求得b的值,進而求得a的值,根據待定系數法,可得答案.
(1)由題意得:k=xy=2×3=6,
∴反比例函數的解析式為y;
(2)設B點坐標為(a,b),如圖,作AD⊥BC于D,則D(2,b),
∵反比例函數y的圖象經過點B(a,b),
∴b,
∴AD=3,
∴S△ABCBCADa(3)=6,
解得a=6,
∴b1,
∴B(6,1),
設AB的解析式為y=kx+b,將A(2,3),B(6,1)代入函數解析式,得
,解得:,
所以直線AB的解析式為yx+4.
科目:初中數學 來源: 題型:
【題目】2020年由于受“疫情”影響,某廠只能按用戶的月需求量(件)()完成一種產品的生產,每件的售價為18萬元,每件的成本(萬元),與的關系式為(,為常數),經市場調研發(fā)現,月需求量與月份(為整數,)符合關系式(為常數),且得到下表中的數據.
(1)求與滿足的關系式;
(2)推斷哪個月產品的需求量最?最小為多少件?
(3)在這一年12個月中,若個月和第()個月的利潤相差最大,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,菱形的頂點與原點重合,頂點落在軸的正半軸上,對角線、交于點,點、恰好都在反比例函數的圖象上,若,則的值為( )
A.B.C.2D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知正方形的邊長為2,是邊上的動點,交CD于F,垂足為G,連接,下列說法:①;②;③點G運動的路徑長為;④CG的最小值為;其中正確的是____________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某游樂園有一個直徑為16米的圓形噴水池,噴水池的周邊有一圈噴水頭,噴出的水柱為拋物線,在距水池中心3米處達到最高,高度為5米,且各方向噴出的水柱恰好在噴水池中心的裝飾物處匯合.如圖所示,以水平方向為x軸,噴水池中心為原點建立直角坐標系.
(1)求水柱所在拋物線(第一象限部分)的函數表達式;
(2)王師傅在噴水池內維修設備期間,噴水管意外噴水,為了不被淋濕,身高1.8米的王師傅站立時必須在離水池中心多少米以內?
(3)經檢修評估,游樂園決定對噴水設施做如下設計改進:在噴出水柱的形狀不變的前提下,把水池的直徑擴大到32米,各方向噴出的水柱仍在噴水池中心保留的原裝飾物(高度不變)處匯合,請?zhí)骄繑U建改造后噴水池水柱的最大高度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,⊙O的半徑OA=2,B是⊙O上的動點(不與點A重合),過點B作⊙O的切線BC,BC=OA,連結OC,AC.當△OAC是直角三角形時,其斜邊長為__.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:三角形一個內角的平分線和與另一個內角相鄰的外角平分線相交所成的銳角稱為該三角形第三個內角的遙望角.
(1)如圖1,∠E是△ABC中∠A的遙望角,若∠A=α,請用含α的代數式表示∠E.
(2)如圖2,四邊形ABCD內接于⊙O,=,四邊形ABCD的外角平分線DF交⊙O于點F,連結BF并延長交CD的延長線于點E.求證:∠BEC是△ABC中∠BAC的遙望角.
(3)如圖3,在(2)的條件下,連結AE,AF,若AC是⊙O的直徑.
①求∠AED的度數;
②若AB=8,CD=5,求△DEF的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xoy中,直線與x 軸交于點A,與y軸交于點C.拋物線y=ax2+bx+c的對稱軸是且經過A、C兩點,與x軸的另一交點為點B.
(1)①直接寫出點B的坐標;②求拋物線解析式.
(2)若點P為直線AC上方的拋物線上的一點,連接PA,PC.求△PAC的面積的最大值,并求出此時點P的坐標.
(3)拋物線上是否存在點M,過點M作MN垂直x軸于點N,使得以點A、M、N為頂點的三角形與△ABC相似?若存在,直接寫出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】時下娛樂綜藝節(jié)目風靡全國,隨機對九年級部分學生進行了一次調查,對最喜歡《我是喜劇王》(記為A)、《王牌對王牌》(記為B)、《奔跑吧,兄弟》(記為C)、《歡樂喜劇人》(記為D)的同學進行了統計(每位同學只選擇一個最喜歡的節(jié)目),繪制了以下不完整的統計圖,請根據圖中信息解答問題:
(1)求本次調查一共選取了多少名學生;
(2)將條形統計圖補充完整;
(3)若九年級共有1900名學生,估計其中最喜歡《奔跑吧,兄弟》的學生大約是多少名.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com