【題目】已知如圖,直線AB、CD相交于點(diǎn)O,∠COE=90°.
(1)若∠AOC=36°,求∠BOE的度數(shù);
(2)若∠BOD:∠BOC=1:5,求∠AOE的度數(shù);
(3)在(2)的條件下,過(guò)點(diǎn)O作OF⊥AB,請(qǐng)直接寫(xiě)出∠EOF的度數(shù).
【答案】
(1)解:∵∠AOC=36°,∠COE=90°,
∴∠BOE=180°﹣∠AOC﹣∠COE=54°
(2)解:∵∠BOD:∠BOC=1:5,
∴∠BOD=180°× =30°,
∴∠AOC=30°,
∴∠AOE=30°+90°=120°
(3)解:如圖1,∠EOF=120°﹣90°=30°,
或如圖2,∠EOF=360°﹣120°﹣90°=150°.
故∠EOF的度數(shù)是30°或150°.
【解析】(1)根據(jù)平角的定義求解即可;(2)根據(jù)平角的定義可求∠BOD,根據(jù)對(duì)頂角的定義可求∠AOC,根據(jù)角的和差關(guān)系可求∠AOE的度數(shù);(3)先過(guò)點(diǎn)O作OF⊥AB,再分兩種情況根據(jù)角的和差關(guān)系可求∠EOF的度數(shù).
【考點(diǎn)精析】本題主要考查了對(duì)頂角和鄰補(bǔ)角的相關(guān)知識(shí)點(diǎn),需要掌握兩直線相交形成的四個(gè)角中,每一個(gè)角的鄰補(bǔ)角有兩個(gè),而對(duì)頂角只有一個(gè)才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)軸上,點(diǎn)A表示數(shù)a,將點(diǎn)A向右平移4個(gè)單位長(zhǎng)度得到點(diǎn)B,點(diǎn)B表示數(shù)b.若|a|=|b|,則a的值為( )
A.﹣3B.﹣2C.﹣1D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果一個(gè)數(shù)的相反數(shù)是負(fù)數(shù),那么這個(gè)數(shù)一定是( ).
A.正數(shù)
B.負(fù)數(shù)
C.零
D.正數(shù)、負(fù)數(shù)、零都有可能
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD是正方形(提示:正方形四邊相等,四個(gè)角都是90°)
如圖1,點(diǎn)G是BC邊上任意一點(diǎn)(不與點(diǎn)B、C重合),連接AG,作BF⊥AG于點(diǎn)F,
DE⊥AG于點(diǎn)E.求證:△ABF≌△DAE;
(2) ①如圖2,若點(diǎn)G是CD邊上任意一點(diǎn)(不與點(diǎn)C、D重合),連接AG,作BF⊥AG于點(diǎn)F,
DE⊥AG于點(diǎn)E,線段EF與AF、BF的等量關(guān)系是______ ___;
②如圖3,若點(diǎn)G是CD延長(zhǎng)線上任意一點(diǎn),連接AG,作BF⊥AG于點(diǎn)F,DE⊥AG于點(diǎn)E,
線段EF與AF、BF的等量關(guān)系是______ ;
(3)若點(diǎn)G是BC延長(zhǎng)線上任意一點(diǎn),連接AG,作BF⊥AG于點(diǎn)F,DE⊥AG于點(diǎn)E,請(qǐng)畫(huà)圖并
探究線段EF與AF、BF的等量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)學(xué)活動(dòng)課上,老師和同學(xué)們判斷一個(gè)四邊形門(mén)框是否為矩形,下面是某合作學(xué)習(xí)小組的4位同學(xué)擬定的方案,其中正確的是( ).
A. 測(cè)量對(duì)角線是否相互平分 B. 測(cè)量?jī)山M對(duì)邊是否分別相等
C. 測(cè)量一組對(duì)角是否都為直角 D. 測(cè)量其中三角形是否都為直角
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊三角形ABC中,頂點(diǎn)A,C處各有一只螞蟻,它們同時(shí)出發(fā),分別以同樣的速度由A向B和由C向A爬行,經(jīng)過(guò)t秒后,它們分別到達(dá)D,E處,請(qǐng)問(wèn)兩只螞蟻在爬行過(guò)程中,
(1)CD與BE有何數(shù)量關(guān)系,為什么?
(2)DC與BE相交所成的∠BFC的大小是否發(fā)生變化?若有變化,請(qǐng)說(shuō)明理由;若沒(méi)有變化,求出∠BFC的大小。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)進(jìn)行社會(huì)調(diào)查,隨機(jī)抽查了某小區(qū)的40戶(hù)家庭的年收入(萬(wàn)元)情況,并繪制了如圖不完整的頻數(shù)直方圖,每組包括前一個(gè)邊界值,不包括后一個(gè)邊界值.
(1)補(bǔ)全頻數(shù)直方圖.
(2)年收入的中位數(shù)落在哪一個(gè)收入段內(nèi)?
(3)如果每一組年收入均以最低計(jì)算,這40戶(hù)家庭的年平均收入至少為多少萬(wàn)元?
(4)如果該小區(qū)有1200戶(hù)住戶(hù),請(qǐng)你估計(jì)該小區(qū)有多少家庭的年收入低于18萬(wàn)元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com