【題目】如圖,將線段AB繞點O順時針旋轉(zhuǎn)90°得到線段A′B′,那么A(-1,3)的對應(yīng)點A′的坐標是________.
【答案】(3,1)
【解析】
由線段AB繞點O順時針旋轉(zhuǎn)90°得到線段A′B′可以得出△ABO≌△A′B′O′,∠AOA′=90°,作AC⊥y軸于C,A′C′⊥x軸于C′,就可以得出△ACO≌△A′C′O,就可以得出AC=A′C′,CO=C′O,由A的坐標就可以求出結(jié)論.
∵線段AB繞點O順時針旋轉(zhuǎn)90°得到線段A′B′,
∴△ABO≌△A′B′O′,∠AOA′=90°,
∴AO=A′O.
作AC⊥y軸于C,A′C′⊥x軸于C′,
∴∠ACO=∠A′C′O=90°.
∵∠COC′=90°,
∴∠AOA′-∠COA′=∠COC′-∠COA′,
∴∠AOC=∠A′OC′.
在△ACO和△A′C′O中,
,
∴△ACO≌△A′C′O(AAS),
∴AC=A′C′,CO=C′O.
∵A(-1,3),
∴AC=1,CO=3,
∴A′C′=1,OC′=3,
∴A′(3,1).
故答案為(3,1).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC=2,∠A=90°,將一塊與△ABC全等的三角板的直角頂點放在點C上,一直角邊與BC重疊.
(1)操作1:固定△ABC,將三角板沿C→B方向平移,使其直角頂點落在BC的中點M,如圖2所示,探究:三角板沿C→B方向平移的距離為;
(2)操作2:在(1)的情況下,將三角板BC的中點M順時針方向旋轉(zhuǎn)角度a(0°<a<90°),如圖3所示,探究:設(shè)三角形板兩直角邊分別與AB、AC交于點P、Q,觀察四邊形MPAQ形狀的變化,問:四邊形MPAQ的面積S是否改變,若不變,求其面積;若改變,試說明理由;
(3)在(2)的情形下,連PQ,則當(dāng)△MPQ的面積等于四邊形MPAQ的面積的一半時,四邊形MPAQ的形狀為 , 此時BP= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,將△ABC沿著某一方向平移一定的距離得到△MNL,則下列結(jié)論中正確的有( )
①AM∥BN;②AM=BN;③BC=ML;④∠ACB=∠MNL。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標系,矩形OABC的邊OA在x軸上,邊OC在y軸上,點B的坐標為(3,1),將矩形沿對角線BO翻折,C點落在D點的位置,且BD交x軸于點E.那么點D的坐標為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一矩形紙片OABC放在平面直角坐標系中,O為原點,點A在x軸上,點C在y軸上,OA=10,OC=8,如圖在OC邊上取一點D,將△BCD沿BD折疊,使點C恰好落在OA邊上,記作E點;
(1)求點E的坐標及折痕DB的長;
(2)在x軸上取兩點M、N(點M在點N的左側(cè)),且MN=4.5,求使四邊形BDMN的周長最短的點M、點N的坐標。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).
(1) 請畫出△ABC向左平移5個單位長度后得到的△ABC;
(2) 請畫出△ABC關(guān)于原點對稱的△ABC;
(3) 在軸上求作一點P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等腰直角三角形,∠ACB=90°,分別以AB,AC為直角邊向外作等腰直角△ABD和等腰直角△ACE,G為BD的中點,連接CG,BE,CD,BE與CD交于點F.
(1)判斷四邊形ACGD的形狀,并說明理由.
(2)求證:BE=CD,BE⊥CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】體育委員把全班45名同學(xué)的體育鍛煉時間,并繪制了如圖所示的折線統(tǒng)計圖,則全班45名同學(xué)一周的體育鍛煉總時間的眾數(shù)和中位數(shù)分別是( )
A.9,9
B.9,10
C.18,9
D.18,18
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com