如圖,在等邊△ABC中,D、E、F分別是BC,AC,AB上的點(diǎn),且DE⊥AC,EF⊥AB,F(xiàn)D⊥BC,則△DEF與△ABC的面積之比等于( 。

A.1:3           B.2:3            C.:2          D.:3
A

試題分析:∵DE⊥AC,EF⊥AB,F(xiàn)D⊥BC,
∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,
∴∠C=∠FDE,
同理可得:∠B=∠DFE,∠A=DEF,
∴△DEF∽△CAB,
∴△DEF與△ABC的面積之比=(2,
又∵△ABC為正三角形,
∴∠B=∠C=∠A=60°,△EFD是等邊三角形,
∴EF=DE=DF,
又∵DE⊥AC,EF⊥AB,F(xiàn)D⊥BC,
∴△AEF≌△CDE≌△BFD,
∴BF=AE=CD,AF=BD=EC,
在Rt△DEC中,
DE=DC×sin∠C=DC,EC=cos∠C×DC=DC,
又∵DC+BD=BC=AC=DC,
==,
∴△DEF與△ABC的面積之比等于:(2==1:3.
故選:A.

點(diǎn)評:本題主要考查如何求三角形的面積之比,若能證出兩個(gè)三角形是相似三角形,此時(shí)三角形的面積之比等于對應(yīng)邊之比的平方,只要求出對應(yīng)邊比即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在矩形ABCD中,AB=6,BC=8,沿直線MN對折,使A、C重合,直線MN交AC于O.
(1)求證:△COM∽△CBA;    
(2)求線段OM的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在矩形ABCD中,E是AD邊上點(diǎn),∠CEF=90°,EF交AB邊于F,

(1)若矩形ABCD的周長為10,設(shè)AB=x(0<x≤4),BC=y.寫出y與x的函數(shù)關(guān)系式,并在直角坐標(biāo)系中畫出此函數(shù)圖象;
(2)求證:△AFE∽△DEC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在,.點(diǎn)是線段邊上的一動(dòng)點(diǎn)(不含、兩端點(diǎn)),連結(jié),作,交線段于點(diǎn)
  
(1)求證:;
(2)設(shè),,請寫之間的函數(shù)關(guān)系式,并求的最小值。
(3)點(diǎn)在運(yùn)動(dòng)的過程中,能否構(gòu)成等腰三角形?若能,求出的長;若不能,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,D是△ABC的重心,則下列結(jié)論不正確的是( 。
A.AD=2DEB.AE=2DEC.BE=CED.AD:DE=2:1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在正方形ABCD的外側(cè),作等邊△ADE,BE、CE分別交AD于G、H,設(shè)△CDH、△GHE的面積分別為S1、S2,則( 。
A.3S1=2S2B.2S1=3S2C.2S1=S2D.S1=2S2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,若Rt△ABC,∠C=90°,CD為斜邊上的高,AC=m,AB=n,則△ACD的面積與△BCD的面積比的值是(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,四邊形ABCD四邊的中點(diǎn)分別為E,F(xiàn),G,H,對角線AC與BD相交于點(diǎn)O,若四邊形EFGH的面積是3,則四邊形ABCD的面積是(  )
A.3B.6C.9D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,△ABC與△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D.給出下列結(jié)論:
①∠AFC=∠C;
②DE=CF;
③△ADE∽△FDB;
④∠BFD=∠CAF
其中正確的結(jié)論是        

查看答案和解析>>

同步練習(xí)冊答案